import pytest import numpy as np import gym from gym.wrappers import TransformReward @pytest.mark.parametrize("env_id", ["CartPole-v1", "Pendulum-v1"]) def test_transform_reward(env_id): # use case #1: scale scales = [0.1, 200] for scale in scales: env = gym.make(env_id) wrapped_env = TransformReward(gym.make(env_id), lambda r: scale * r) action = env.action_space.sample() env.seed(0) env.reset() wrapped_env.seed(0) wrapped_env.reset() _, reward, _, _ = env.step(action) _, wrapped_reward, _, _ = wrapped_env.step(action) assert wrapped_reward == scale * reward del env, wrapped_env # use case #2: clip min_r = -0.0005 max_r = 0.0002 env = gym.make(env_id) wrapped_env = TransformReward(gym.make(env_id), lambda r: np.clip(r, min_r, max_r)) action = env.action_space.sample() env.seed(0) env.reset() wrapped_env.seed(0) wrapped_env.reset() _, reward, _, _ = env.step(action) _, wrapped_reward, _, _ = wrapped_env.step(action) assert abs(wrapped_reward) < abs(reward) assert wrapped_reward == -0.0005 or wrapped_reward == 0.0002 del env, wrapped_env # use case #3: sign env = gym.make(env_id) wrapped_env = TransformReward(gym.make(env_id), lambda r: np.sign(r)) env.seed(0) env.reset() wrapped_env.seed(0) wrapped_env.reset() for _ in range(1000): action = env.action_space.sample() _, wrapped_reward, done, _ = wrapped_env.step(action) assert wrapped_reward in [-1.0, 0.0, 1.0] if done: break del env, wrapped_env