"""Implementation of a space consisting of finitely many elements.""" from typing import Optional, Union import numpy as np from gym.spaces.space import Space from gym.utils import seeding class Discrete(Space[int]): r"""A space consisting of finitely many elements. This class represents a finite subset of integers, more specifically a set of the form :math:`\{ a, a+1, \dots, a+n-1 \}`. Example:: >>> Discrete(2) # {0, 1} >>> Discrete(3, start=-1) # {-1, 0, 1} """ def __init__( self, n: int, seed: Optional[Union[int, seeding.RandomNumberGenerator]] = None, start: int = 0, ): r"""Constructor of :class:`Discrete` space. This will construct the space :math:`\{\text{start}, ..., \text{start} + n - 1\}`. Args: n (int): The number of elements of this space. seed: Optionally, you can use this argument to seed the RNG that is used to sample from the ``Dict`` space. start (int): The smallest element of this space. """ assert n > 0, "n (counts) have to be positive" assert isinstance(start, (int, np.integer)) self.n = int(n) self.start = int(start) super().__init__((), np.int64, seed) def sample(self) -> int: """Generates a single random sample from this space. A sample will be chosen uniformly at random. Returns: A sampled integer from the space """ return int(self.start + self.np_random.integers(self.n)) def contains(self, x) -> bool: """Return boolean specifying if x is a valid member of this space.""" if isinstance(x, int): as_int = x elif isinstance(x, (np.generic, np.ndarray)) and ( x.dtype.char in np.typecodes["AllInteger"] and x.shape == () ): as_int = int(x) # type: ignore else: return False return self.start <= as_int < self.start + self.n def __repr__(self) -> str: """Gives a string representation of this space.""" if self.start != 0: return "Discrete(%d, start=%d)" % (self.n, self.start) return "Discrete(%d)" % self.n def __eq__(self, other) -> bool: """Check whether ``other`` is equivalent to this instance.""" return ( isinstance(other, Discrete) and self.n == other.n and self.start == other.start ) def __setstate__(self, state): """Used when loading a pickled space. This method has to be implemented explicitly to allow for loading of legacy states. Args: state: The new state """ super().__setstate__(state) # Don't mutate the original state state = dict(state) # Allow for loading of legacy states. # See https://github.com/openai/gym/pull/2470 if "start" not in state: state["start"] = 0 # Update our state self.__dict__.update(state)