import re from multiprocessing import TimeoutError import numpy as np import pytest from gym.error import AlreadyPendingCallError, ClosedEnvironmentError, NoAsyncCallError from gym.spaces import Box, Discrete, MultiDiscrete, Tuple from gym.vector.async_vector_env import AsyncVectorEnv from tests.vector.utils import ( CustomSpace, make_custom_space_env, make_env, make_slow_env, ) @pytest.mark.parametrize("shared_memory", [True, False]) def test_create_async_vector_env(shared_memory): env_fns = [make_env("CartPole-v1", i) for i in range(8)] env = AsyncVectorEnv(env_fns, shared_memory=shared_memory) assert env.num_envs == 8 env.close() @pytest.mark.parametrize("shared_memory", [True, False]) def test_reset_async_vector_env(shared_memory): env_fns = [make_env("CartPole-v1", i) for i in range(8)] env = AsyncVectorEnv(env_fns, shared_memory=shared_memory) observations, infos = env.reset() env.close() assert isinstance(env.observation_space, Box) assert isinstance(observations, np.ndarray) assert observations.dtype == env.observation_space.dtype assert observations.shape == (8,) + env.single_observation_space.shape assert observations.shape == env.observation_space.shape try: env = AsyncVectorEnv(env_fns, shared_memory=shared_memory) observations, infos = env.reset() finally: env.close() assert isinstance(env.observation_space, Box) assert isinstance(observations, np.ndarray) assert observations.dtype == env.observation_space.dtype assert observations.shape == (8,) + env.single_observation_space.shape assert observations.shape == env.observation_space.shape assert isinstance(infos, dict) assert all([isinstance(info, dict) for info in infos]) @pytest.mark.parametrize("shared_memory", [True, False]) @pytest.mark.parametrize("use_single_action_space", [True, False]) def test_step_async_vector_env(shared_memory, use_single_action_space): env_fns = [make_env("CartPole-v1", i) for i in range(8)] env = AsyncVectorEnv(env_fns, shared_memory=shared_memory) observations = env.reset() assert isinstance(env.single_action_space, Discrete) assert isinstance(env.action_space, MultiDiscrete) if use_single_action_space: actions = [env.single_action_space.sample() for _ in range(8)] else: actions = env.action_space.sample() observations, rewards, terminateds, truncateds, _ = env.step(actions) env.close() assert isinstance(env.observation_space, Box) assert isinstance(observations, np.ndarray) assert observations.dtype == env.observation_space.dtype assert observations.shape == (8,) + env.single_observation_space.shape assert observations.shape == env.observation_space.shape assert isinstance(rewards, np.ndarray) assert isinstance(rewards[0], (float, np.floating)) assert rewards.ndim == 1 assert rewards.size == 8 assert isinstance(terminateds, np.ndarray) assert terminateds.dtype == np.bool_ assert terminateds.ndim == 1 assert terminateds.size == 8 assert isinstance(truncateds, np.ndarray) assert truncateds.dtype == np.bool_ assert truncateds.ndim == 1 assert truncateds.size == 8 @pytest.mark.parametrize("shared_memory", [True, False]) def test_call_async_vector_env(shared_memory): env_fns = [make_env("CartPole-v1", i, render_mode="rgb_array") for i in range(4)] env = AsyncVectorEnv(env_fns, shared_memory=shared_memory) _ = env.reset() images = env.call("render") gravity = env.call("gravity") env.close() assert isinstance(images, tuple) assert len(images) == 4 for i in range(4): assert len(images[i]) == 1 assert isinstance(images[i][0], np.ndarray) assert isinstance(gravity, tuple) assert len(gravity) == 4 for i in range(4): assert isinstance(gravity[i], float) assert gravity[i] == 9.8 @pytest.mark.parametrize("shared_memory", [True, False]) def test_set_attr_async_vector_env(shared_memory): env_fns = [make_env("CartPole-v1", i) for i in range(4)] env = AsyncVectorEnv(env_fns, shared_memory=shared_memory) env.set_attr("gravity", [9.81, 3.72, 8.87, 1.62]) gravity = env.get_attr("gravity") assert gravity == (9.81, 3.72, 8.87, 1.62) env.close() @pytest.mark.parametrize("shared_memory", [True, False]) def test_copy_async_vector_env(shared_memory): env_fns = [make_env("CartPole-v1", i) for i in range(8)] # TODO, these tests do nothing, understand the purpose of the tests and fix them env = AsyncVectorEnv(env_fns, shared_memory=shared_memory, copy=True) observations, infos = env.reset() observations[0] = 0 env.close() @pytest.mark.parametrize("shared_memory", [True, False]) def test_no_copy_async_vector_env(shared_memory): env_fns = [make_env("CartPole-v1", i) for i in range(8)] # TODO, these tests do nothing, understand the purpose of the tests and fix them env = AsyncVectorEnv(env_fns, shared_memory=shared_memory, copy=False) observations, infos = env.reset() observations[0] = 0 env.close() @pytest.mark.parametrize("shared_memory", [True, False]) def test_reset_timeout_async_vector_env(shared_memory): env_fns = [make_slow_env(0.3, i) for i in range(4)] env = AsyncVectorEnv(env_fns, shared_memory=shared_memory) with pytest.raises(TimeoutError): env.reset_async() env.reset_wait(timeout=0.1) env.close(terminate=True) @pytest.mark.parametrize("shared_memory", [True, False]) def test_step_timeout_async_vector_env(shared_memory): env_fns = [make_slow_env(0.0, i) for i in range(4)] env = AsyncVectorEnv(env_fns, shared_memory=shared_memory) with pytest.raises(TimeoutError): env.reset() env.step_async(np.array([0.1, 0.1, 0.3, 0.1])) observations, rewards, terminateds, truncateds, _ = env.step_wait(timeout=0.1) env.close(terminate=True) @pytest.mark.parametrize("shared_memory", [True, False]) def test_reset_out_of_order_async_vector_env(shared_memory): env_fns = [make_env("CartPole-v1", i) for i in range(4)] env = AsyncVectorEnv(env_fns, shared_memory=shared_memory) with pytest.raises( NoAsyncCallError, match=re.escape( "Calling `reset_wait` without any prior call to `reset_async`." ), ): env.reset_wait() env.close(terminate=True) env = AsyncVectorEnv(env_fns, shared_memory=shared_memory) with pytest.raises( AlreadyPendingCallError, match=re.escape( "Calling `reset_async` while waiting for a pending call to `step` to complete" ), ): actions = env.action_space.sample() env.reset() env.step_async(actions) env.reset_async() with pytest.warns( UserWarning, match=re.escape( "Calling `close` while waiting for a pending call to `step` to complete." ), ): env.close(terminate=True) @pytest.mark.parametrize("shared_memory", [True, False]) def test_step_out_of_order_async_vector_env(shared_memory): env_fns = [make_env("CartPole-v1", i) for i in range(4)] env = AsyncVectorEnv(env_fns, shared_memory=shared_memory) with pytest.raises( NoAsyncCallError, match=re.escape("Calling `step_wait` without any prior call to `step_async`."), ): env.action_space.sample() env.reset() env.step_wait() env.close(terminate=True) env = AsyncVectorEnv(env_fns, shared_memory=shared_memory) with pytest.raises( AlreadyPendingCallError, match=re.escape( "Calling `step_async` while waiting for a pending call to `reset` to complete" ), ): actions = env.action_space.sample() env.reset_async() env.step_async(actions) with pytest.warns( UserWarning, match=re.escape( "Calling `close` while waiting for a pending call to `reset` to complete." ), ): env.close(terminate=True) @pytest.mark.parametrize("shared_memory", [True, False]) def test_already_closed_async_vector_env(shared_memory): env_fns = [make_env("CartPole-v1", i) for i in range(4)] with pytest.raises(ClosedEnvironmentError): env = AsyncVectorEnv(env_fns, shared_memory=shared_memory) env.close() env.reset() @pytest.mark.parametrize("shared_memory", [True, False]) def test_check_spaces_async_vector_env(shared_memory): # CartPole-v1 - observation_space: Box(4,), action_space: Discrete(2) env_fns = [make_env("CartPole-v1", i) for i in range(8)] # FrozenLake-v1 - Discrete(16), action_space: Discrete(4) env_fns[1] = make_env("FrozenLake-v1", 1) with pytest.raises(RuntimeError): env = AsyncVectorEnv(env_fns, shared_memory=shared_memory) env.close(terminate=True) def test_custom_space_async_vector_env(): env_fns = [make_custom_space_env(i) for i in range(4)] env = AsyncVectorEnv(env_fns, shared_memory=False) reset_observations, reset_infos = env.reset() assert isinstance(env.single_action_space, CustomSpace) assert isinstance(env.action_space, Tuple) actions = ("action-2", "action-3", "action-5", "action-7") step_observations, rewards, terminateds, truncateds, _ = env.step(actions) env.close() assert isinstance(env.single_observation_space, CustomSpace) assert isinstance(env.observation_space, Tuple) assert isinstance(reset_observations, tuple) assert reset_observations == ("reset", "reset", "reset", "reset") assert isinstance(step_observations, tuple) assert step_observations == ( "step(action-2)", "step(action-3)", "step(action-5)", "step(action-7)", ) def test_custom_space_async_vector_env_shared_memory(): env_fns = [make_custom_space_env(i) for i in range(4)] with pytest.raises(ValueError): env = AsyncVectorEnv(env_fns, shared_memory=True) env.close(terminate=True)