import pytest import numpy as np from gym import envs from tests.envs.spec_list import spec_list from gym.spaces import Box from gym.utils.env_checker import check_env # This runs a smoketest on each official registered env. We may want # to try also running environments which are not officially registered # envs. @pytest.mark.parametrize("spec", spec_list) def test_env(spec): # Capture warnings with pytest.warns(None) as warnings: env = spec.make() # Test if env adheres to Gym API check_env(env, warn=True, skip_render_check=True) # Check that dtype is explicitly declared for gym.Box spaces for warning_msg in warnings: assert "autodetected dtype" not in str(warning_msg.message) ob_space = env.observation_space act_space = env.action_space ob = env.reset() assert ob_space.contains(ob), f"Reset observation: {ob!r} not in space" if isinstance(ob_space, Box): # Only checking dtypes for Box spaces to avoid iterating through tuple entries assert ( ob.dtype == ob_space.dtype ), f"Reset observation dtype: {ob.dtype}, expected: {ob_space.dtype}" a = act_space.sample() observation, reward, done, _info = env.step(a) assert ob_space.contains( observation ), f"Step observation: {observation!r} not in space" assert np.isscalar(reward), f"{reward} is not a scalar for {env}" assert isinstance(done, bool), f"Expected {done} to be a boolean" if isinstance(ob_space, Box): assert ( observation.dtype == ob_space.dtype ), f"Step observation dtype: {ob.dtype}, expected: {ob_space.dtype}" for mode in env.metadata.get("render_modes", []): env.render(mode=mode) # Make sure we can render the environment after close. for mode in env.metadata.get("render_modes", []): env.render(mode=mode) env.close() @pytest.mark.parametrize("spec", spec_list) def test_reset_info(spec): with pytest.warns(None) as warnings: env = spec.make() ob_space = env.observation_space obs = env.reset() assert ob_space.contains(obs) obs = env.reset(return_info=False) assert ob_space.contains(obs) obs, info = env.reset(return_info=True) assert ob_space.contains(obs) assert isinstance(info, dict) env.close() # Run a longer rollout on some environments def test_random_rollout(): for env in [envs.make("CartPole-v0"), envs.make("FrozenLake-v1")]: agent = lambda ob: env.action_space.sample() ob = env.reset() for _ in range(10): assert env.observation_space.contains(ob) a = agent(ob) assert env.action_space.contains(a) (ob, _reward, done, _info) = env.step(a) if done: break env.close() def test_env_render_result_is_immutable(): environs = [ envs.make("Taxi-v3"), envs.make("FrozenLake-v1"), ] for env in environs: env.reset() output = env.render(mode="ansi") assert isinstance(output, str) env.close()