--- title: Spaces --- # Spaces ```{toctree} :hidden: spaces/fundamental spaces/composite spaces/utils spaces/vector_utils ``` ```{eval-rst} .. automodule:: gymnasium.spaces ``` ## The Base Class ```{eval-rst} .. autoclass:: gymnasium.spaces.Space ``` ### Attributes ```{eval-rst} .. autoproperty:: gymnasium.spaces.space.Space.shape .. property:: Space.dtype Return the data type of this space. .. autoproperty:: gymnasium.spaces.space.Space.is_np_flattenable ``` ### Methods Each space implements the following functions: ```{eval-rst} .. autofunction:: gymnasium.spaces.space.Space.sample .. autofunction:: gymnasium.spaces.space.Space.contains .. autofunction:: gymnasium.spaces.space.Space.seed .. autofunction:: gymnasium.spaces.space.Space.to_jsonable .. autofunction:: gymnasium.spaces.space.Space.from_jsonable ``` ## Fundamental Spaces Gymnasium has a number of fundamental spaces that are used as building boxes for more complex spaces. ```{eval-rst} .. currentmodule:: gymnasium.spaces * :py:class:`Box` - Supports continuous (and discrete) vectors or matrices, used for vector observations, images, etc * :py:class:`Discrete` - Supports a single discrete number of values with an optional start for the values * :py:class:`MultiDiscrete` - Supports single or matrices of binary values, used for holding down a button or if an agent has an object * :py:class:`MultiBinary` - Supports multiple discrete values with multiple axes, used for controller actions * :py:class:`Text` - Supports strings, used for passing agent messages, mission details, etc ``` ## Composite Spaces Often environment spaces require joining fundamental spaces together for vectorised environments, separate agents or readability of the space. ```{eval-rst} * :py:class:`Dict` - Supports a dictionary of keys and subspaces, used for a fixed number of unordered spaces * :py:class:`Tuple` - Supports a tuple of subspaces, used for multiple for a fixed number of ordered spaces * :py:class:`Sequence` - Supports a variable number of instances of a single subspace, used for entities spaces or selecting a variable number of actions * :py:class:`Graph` - Supports graph based actions or observations with discrete or continuous nodes and edge values. ``` ## Utils Gymnasium contains a number of helpful utility functions for flattening and unflattening spaces. This can be important for passing information to neural networks. ```{eval-rst} * :py:class:`utils.flatdim` - The number of dimensions the flattened space will contain * :py:class:`utils.flatten_space` - Flattens a space for which the `flattened` space instances will contain * :py:class:`utils.flatten` - Flattens an instance of a space that is contained within the flattened version of the space * :py:class:`utils.unflatten` - The reverse of the `flatten_space` function ``` ## Vector Utils When vectorizing environments, it is necessary to modify the observation and action spaces for new batched spaces sizes. Therefore, Gymnasium provides a number of additional functions used when using a space with a Vector environment. ```{eval-rst} .. currentmodule:: gymnasium * :py:class:`vector.utils.batch_space` * :py:class:`vector.utils.concatenate` * :py:class:`vector.utils.iterate` * :py:class:`vector.utils.create_empty_array` * :py:class:`vector.utils.create_shared_memory` * :py:class:`vector.utils.read_from_shared_memory` * :py:class:`vector.utils.write_to_shared_memory` ```