import pytest import numpy as np from multiprocessing import TimeoutError from gym.spaces import Box, Tuple, Discrete, MultiDiscrete from gym.error import AlreadyPendingCallError, NoAsyncCallError, ClosedEnvironmentError from tests.vector.utils import ( CustomSpace, make_env, make_slow_env, make_custom_space_env, ) from gym.vector.async_vector_env import AsyncVectorEnv @pytest.mark.parametrize("shared_memory", [True, False]) def test_create_async_vector_env(shared_memory): env_fns = [make_env("CartPole-v1", i) for i in range(8)] try: env = AsyncVectorEnv(env_fns, shared_memory=shared_memory) finally: env.close() assert env.num_envs == 8 @pytest.mark.parametrize("shared_memory", [True, False]) def test_reset_async_vector_env(shared_memory): env_fns = [make_env("CartPole-v1", i) for i in range(8)] try: env = AsyncVectorEnv(env_fns, shared_memory=shared_memory) observations = env.reset() finally: env.close() assert isinstance(env.observation_space, Box) assert isinstance(observations, np.ndarray) assert observations.dtype == env.observation_space.dtype assert observations.shape == (8,) + env.single_observation_space.shape assert observations.shape == env.observation_space.shape try: env = AsyncVectorEnv(env_fns, shared_memory=shared_memory) observations = env.reset(return_info=False) finally: env.close() assert isinstance(env.observation_space, Box) assert isinstance(observations, np.ndarray) assert observations.dtype == env.observation_space.dtype assert observations.shape == (8,) + env.single_observation_space.shape assert observations.shape == env.observation_space.shape try: env = AsyncVectorEnv(env_fns, shared_memory=shared_memory) observations, infos = env.reset(return_info=True) finally: env.close() assert isinstance(env.observation_space, Box) assert isinstance(observations, np.ndarray) assert observations.dtype == env.observation_space.dtype assert observations.shape == (8,) + env.single_observation_space.shape assert observations.shape == env.observation_space.shape assert isinstance(infos, list) assert all([isinstance(info, dict) for info in infos]) @pytest.mark.parametrize("shared_memory", [True, False]) @pytest.mark.parametrize("use_single_action_space", [True, False]) def test_step_async_vector_env(shared_memory, use_single_action_space): env_fns = [make_env("CartPole-v1", i) for i in range(8)] try: env = AsyncVectorEnv(env_fns, shared_memory=shared_memory) observations = env.reset() assert isinstance(env.single_action_space, Discrete) assert isinstance(env.action_space, MultiDiscrete) if use_single_action_space: actions = [env.single_action_space.sample() for _ in range(8)] else: actions = env.action_space.sample() observations, rewards, dones, _ = env.step(actions) finally: env.close() assert isinstance(env.observation_space, Box) assert isinstance(observations, np.ndarray) assert observations.dtype == env.observation_space.dtype assert observations.shape == (8,) + env.single_observation_space.shape assert observations.shape == env.observation_space.shape assert isinstance(rewards, np.ndarray) assert isinstance(rewards[0], (float, np.floating)) assert rewards.ndim == 1 assert rewards.size == 8 assert isinstance(dones, np.ndarray) assert dones.dtype == np.bool_ assert dones.ndim == 1 assert dones.size == 8 @pytest.mark.parametrize("shared_memory", [True, False]) def test_call_async_vector_env(shared_memory): env_fns = [make_env("CartPole-v1", i) for i in range(4)] try: env = AsyncVectorEnv(env_fns, shared_memory=shared_memory) _ = env.reset() images = env.call("render", mode="rgb_array") gravity = env.call("gravity") finally: env.close() assert isinstance(images, tuple) assert len(images) == 4 for i in range(4): assert isinstance(images[i], np.ndarray) assert isinstance(gravity, tuple) assert len(gravity) == 4 for i in range(4): assert isinstance(gravity[i], float) assert gravity[i] == 9.8 @pytest.mark.parametrize("shared_memory", [True, False]) def test_set_attr_async_vector_env(shared_memory): env_fns = [make_env("CartPole-v1", i) for i in range(4)] try: env = AsyncVectorEnv(env_fns, shared_memory=shared_memory) env.set_attr("gravity", [9.81, 3.72, 8.87, 1.62]) gravity = env.get_attr("gravity") assert gravity == (9.81, 3.72, 8.87, 1.62) finally: env.close() @pytest.mark.parametrize("shared_memory", [True, False]) def test_copy_async_vector_env(shared_memory): env_fns = [make_env("CartPole-v1", i) for i in range(8)] try: env = AsyncVectorEnv(env_fns, shared_memory=shared_memory, copy=True) observations = env.reset() observations[0] = 0 finally: env.close() @pytest.mark.parametrize("shared_memory", [True, False]) def test_no_copy_async_vector_env(shared_memory): env_fns = [make_env("CartPole-v1", i) for i in range(8)] try: env = AsyncVectorEnv(env_fns, shared_memory=shared_memory, copy=False) observations = env.reset() observations[0] = 0 finally: env.close() @pytest.mark.parametrize("shared_memory", [True, False]) def test_reset_timeout_async_vector_env(shared_memory): env_fns = [make_slow_env(0.3, i) for i in range(4)] with pytest.raises(TimeoutError): try: env = AsyncVectorEnv(env_fns, shared_memory=shared_memory) env.reset_async() observations = env.reset_wait(timeout=0.1) finally: env.close(terminate=True) @pytest.mark.parametrize("shared_memory", [True, False]) def test_step_timeout_async_vector_env(shared_memory): env_fns = [make_slow_env(0.0, i) for i in range(4)] with pytest.raises(TimeoutError): try: env = AsyncVectorEnv(env_fns, shared_memory=shared_memory) observations = env.reset() env.step_async([0.1, 0.1, 0.3, 0.1]) observations, rewards, dones, _ = env.step_wait(timeout=0.1) finally: env.close(terminate=True) @pytest.mark.filterwarnings("ignore::UserWarning") @pytest.mark.parametrize("shared_memory", [True, False]) def test_reset_out_of_order_async_vector_env(shared_memory): env_fns = [make_env("CartPole-v1", i) for i in range(4)] with pytest.raises(NoAsyncCallError): try: env = AsyncVectorEnv(env_fns, shared_memory=shared_memory) observations = env.reset_wait() except NoAsyncCallError as exception: assert exception.name == "reset" raise finally: env.close(terminate=True) with pytest.raises(AlreadyPendingCallError): try: env = AsyncVectorEnv(env_fns, shared_memory=shared_memory) actions = env.action_space.sample() observations = env.reset() env.step_async(actions) env.reset_async() except NoAsyncCallError as exception: assert exception.name == "step" raise finally: env.close(terminate=True) @pytest.mark.filterwarnings("ignore::UserWarning") @pytest.mark.parametrize("shared_memory", [True, False]) def test_step_out_of_order_async_vector_env(shared_memory): env_fns = [make_env("CartPole-v1", i) for i in range(4)] with pytest.raises(NoAsyncCallError): try: env = AsyncVectorEnv(env_fns, shared_memory=shared_memory) actions = env.action_space.sample() observations = env.reset() observations, rewards, dones, infos = env.step_wait() except AlreadyPendingCallError as exception: assert exception.name == "step" raise finally: env.close(terminate=True) with pytest.raises(AlreadyPendingCallError): try: env = AsyncVectorEnv(env_fns, shared_memory=shared_memory) actions = env.action_space.sample() env.reset_async() env.step_async(actions) except AlreadyPendingCallError as exception: assert exception.name == "reset" raise finally: env.close(terminate=True) @pytest.mark.parametrize("shared_memory", [True, False]) def test_already_closed_async_vector_env(shared_memory): env_fns = [make_env("CartPole-v1", i) for i in range(4)] with pytest.raises(ClosedEnvironmentError): env = AsyncVectorEnv(env_fns, shared_memory=shared_memory) env.close() observations = env.reset() @pytest.mark.parametrize("shared_memory", [True, False]) def test_check_spaces_async_vector_env(shared_memory): # CartPole-v1 - observation_space: Box(4,), action_space: Discrete(2) env_fns = [make_env("CartPole-v1", i) for i in range(8)] # FrozenLake-v1 - Discrete(16), action_space: Discrete(4) env_fns[1] = make_env("FrozenLake-v1", 1) with pytest.raises(RuntimeError): env = AsyncVectorEnv(env_fns, shared_memory=shared_memory) env.close(terminate=True) def test_custom_space_async_vector_env(): env_fns = [make_custom_space_env(i) for i in range(4)] try: env = AsyncVectorEnv(env_fns, shared_memory=False) reset_observations = env.reset() assert isinstance(env.single_action_space, CustomSpace) assert isinstance(env.action_space, Tuple) actions = ("action-2", "action-3", "action-5", "action-7") step_observations, rewards, dones, _ = env.step(actions) finally: env.close() assert isinstance(env.single_observation_space, CustomSpace) assert isinstance(env.observation_space, Tuple) assert isinstance(reset_observations, tuple) assert reset_observations == ("reset", "reset", "reset", "reset") assert isinstance(step_observations, tuple) assert step_observations == ( "step(action-2)", "step(action-3)", "step(action-5)", "step(action-7)", ) def test_custom_space_async_vector_env_shared_memory(): env_fns = [make_custom_space_env(i) for i in range(4)] with pytest.raises(ValueError): env = AsyncVectorEnv(env_fns, shared_memory=True) env.close(terminate=True)