import numpy as np import pytest from gym import envs from gym.envs.tests.spec_list import spec_list # This runs a smoketest on each official registered env. We may want # to try also running environments which are not officially registered # envs. @pytest.mark.parametrize("spec", spec_list) def test_env(spec): env = spec.make() ob_space = env.observation_space act_space = env.action_space ob = env.reset() assert ob_space.contains(ob), 'Reset observation: {!r} not in space'.format(ob) a = act_space.sample() observation, reward, done, _info = env.step(a) assert ob_space.contains(observation), 'Step observation: {!r} not in space'.format(observation) assert np.isscalar(reward), "{} is not a scalar for {}".format(reward, env) assert isinstance(done, bool), "Expected {} to be a boolean".format(done) for mode in env.metadata.get('render.modes', []): env.render(mode=mode) # Make sure we can render the environment after close. for mode in env.metadata.get('render.modes', []): env.render(mode=mode) env.close() # Run a longer rollout on some environments def test_random_rollout(): for env in [envs.make('CartPole-v0'), envs.make('FrozenLake-v0')]: agent = lambda ob: env.action_space.sample() ob = env.reset() for _ in range(10): assert env.observation_space.contains(ob) a = agent(ob) assert env.action_space.contains(a) (ob, _reward, done, _info) = env.step(a) if done: break env.close()