from typing import Optional import numpy as np from .space import Space class Discrete(Space[int]): r"""A discrete space in :math:`\{ 0, 1, \\dots, n-1 \}`. A start value can be optionally specified to shift the range to :math:`\{ a, a+1, \\dots, a+n-1 \}`. Example:: >>> Discrete(2) # {0, 1} >>> Discrete(3, start=-1) # {-1, 0, 1} """ def __init__(self, n: int, seed: Optional[int] = None, start: int = 0): assert n > 0, "n (counts) have to be positive" assert isinstance(start, (int, np.integer)) self.n = int(n) self.start = int(start) super().__init__((), np.int64, seed) def sample(self) -> int: return int(self.start + self.np_random.integers(self.n)) def contains(self, x) -> bool: if isinstance(x, int): as_int = x elif isinstance(x, (np.generic, np.ndarray)) and ( x.dtype.char in np.typecodes["AllInteger"] and x.shape == () ): as_int = int(x) # type: ignore else: return False return self.start <= as_int < self.start + self.n def __repr__(self) -> str: if self.start != 0: return "Discrete(%d, start=%d)" % (self.n, self.start) return "Discrete(%d)" % self.n def __eq__(self, other) -> bool: return ( isinstance(other, Discrete) and self.n == other.n and self.start == other.start ) def __setstate__(self, state): super().__setstate__(state) # Don't mutate the original state state = dict(state) # Allow for loading of legacy states. # See https://github.com/openai/gym/pull/2470 if "start" not in state: state["start"] = 0 # Update our state self.__dict__.update(state)