import numpy as np import pytest from gym.spaces import Box, Discrete, MultiDiscrete, Tuple from gym.vector.sync_vector_env import SyncVectorEnv from tests.vector.utils import CustomSpace, make_custom_space_env, make_env def test_create_sync_vector_env(): env_fns = [make_env("FrozenLake-v1", i) for i in range(8)] try: env = SyncVectorEnv(env_fns) finally: env.close() assert env.num_envs == 8 def test_reset_sync_vector_env(): env_fns = [make_env("CartPole-v1", i) for i in range(8)] try: env = SyncVectorEnv(env_fns) observations = env.reset() finally: env.close() assert isinstance(env.observation_space, Box) assert isinstance(observations, np.ndarray) assert observations.dtype == env.observation_space.dtype assert observations.shape == (8,) + env.single_observation_space.shape assert observations.shape == env.observation_space.shape del observations try: env = SyncVectorEnv(env_fns) observations = env.reset(return_info=False) finally: env.close() assert isinstance(env.observation_space, Box) assert isinstance(observations, np.ndarray) assert observations.dtype == env.observation_space.dtype assert observations.shape == (8,) + env.single_observation_space.shape assert observations.shape == env.observation_space.shape del observations env_fns = [make_env("CartPole-v1", i) for i in range(8)] try: env = SyncVectorEnv(env_fns) observations, infos = env.reset(return_info=True) finally: env.close() assert isinstance(env.observation_space, Box) assert isinstance(observations, np.ndarray) assert observations.dtype == env.observation_space.dtype assert observations.shape == (8,) + env.single_observation_space.shape assert observations.shape == env.observation_space.shape assert isinstance(infos, list) assert all([isinstance(info, dict) for info in infos]) @pytest.mark.parametrize("use_single_action_space", [True, False]) def test_step_sync_vector_env(use_single_action_space): env_fns = [make_env("FrozenLake-v1", i) for i in range(8)] try: env = SyncVectorEnv(env_fns) observations = env.reset() assert isinstance(env.single_action_space, Discrete) assert isinstance(env.action_space, MultiDiscrete) if use_single_action_space: actions = [env.single_action_space.sample() for _ in range(8)] else: actions = env.action_space.sample() observations, rewards, dones, _ = env.step(actions) finally: env.close() assert isinstance(env.observation_space, MultiDiscrete) assert isinstance(observations, np.ndarray) assert observations.dtype == env.observation_space.dtype assert observations.shape == (8,) + env.single_observation_space.shape assert observations.shape == env.observation_space.shape assert isinstance(rewards, np.ndarray) assert isinstance(rewards[0], (float, np.floating)) assert rewards.ndim == 1 assert rewards.size == 8 assert isinstance(dones, np.ndarray) assert dones.dtype == np.bool_ assert dones.ndim == 1 assert dones.size == 8 def test_call_sync_vector_env(): env_fns = [make_env("CartPole-v1", i) for i in range(4)] try: env = SyncVectorEnv(env_fns) _ = env.reset() images = env.call("render", mode="rgb_array") gravity = env.call("gravity") finally: env.close() assert isinstance(images, tuple) assert len(images) == 4 for i in range(4): assert isinstance(images[i], np.ndarray) assert isinstance(gravity, tuple) assert len(gravity) == 4 for i in range(4): assert isinstance(gravity[i], float) assert gravity[i] == 9.8 def test_set_attr_sync_vector_env(): env_fns = [make_env("CartPole-v1", i) for i in range(4)] try: env = SyncVectorEnv(env_fns) env.set_attr("gravity", [9.81, 3.72, 8.87, 1.62]) gravity = env.get_attr("gravity") assert gravity == (9.81, 3.72, 8.87, 1.62) finally: env.close() def test_check_spaces_sync_vector_env(): # CartPole-v1 - observation_space: Box(4,), action_space: Discrete(2) env_fns = [make_env("CartPole-v1", i) for i in range(8)] # FrozenLake-v1 - Discrete(16), action_space: Discrete(4) env_fns[1] = make_env("FrozenLake-v1", 1) with pytest.raises(RuntimeError): env = SyncVectorEnv(env_fns) env.close() def test_custom_space_sync_vector_env(): env_fns = [make_custom_space_env(i) for i in range(4)] try: env = SyncVectorEnv(env_fns) reset_observations = env.reset() assert isinstance(env.single_action_space, CustomSpace) assert isinstance(env.action_space, Tuple) actions = ("action-2", "action-3", "action-5", "action-7") step_observations, rewards, dones, _ = env.step(actions) finally: env.close() assert isinstance(env.single_observation_space, CustomSpace) assert isinstance(env.observation_space, Tuple) assert isinstance(reset_observations, tuple) assert reset_observations == ("reset", "reset", "reset", "reset") assert isinstance(step_observations, tuple) assert step_observations == ( "step(action-2)", "step(action-3)", "step(action-5)", "step(action-7)", )