from collections import OrderedDict import numpy as np from gym.spaces import Box from gym.spaces import Discrete from gym.spaces import MultiDiscrete from gym.spaces import MultiBinary from gym.spaces import Tuple from gym.spaces import Dict def flatdim(space): """Return the number of dimensions a flattened equivalent of this space would have. Accepts a space and returns an integer. Raises ``NotImplementedError`` if the space is not defined in ``gym.spaces``. """ if isinstance(space, Box): return int(np.prod(space.shape)) elif isinstance(space, Discrete): return int(space.n) elif isinstance(space, Tuple): return int(sum([flatdim(s) for s in space.spaces])) elif isinstance(space, Dict): return int(sum([flatdim(s) for s in space.spaces.values()])) elif isinstance(space, MultiBinary): return int(space.n) elif isinstance(space, MultiDiscrete): return int(np.prod(space.shape)) else: raise NotImplementedError def flatten(space, x): """Flatten a data point from a space. This is useful when e.g. points from spaces must be passed to a neural network, which only understands flat arrays of floats. Accepts a space and a point from that space. Always returns a 1D array. Raises ``NotImplementedError`` if the space is not defined in ``gym.spaces``. """ if isinstance(space, Box): return np.asarray(x, dtype=space.dtype).flatten() elif isinstance(space, Discrete): onehot = np.zeros(space.n, dtype=space.dtype) onehot[x] = 1 return onehot elif isinstance(space, Tuple): return np.concatenate( [flatten(s, x_part) for x_part, s in zip(x, space.spaces)]) elif isinstance(space, Dict): return np.concatenate( [flatten(s, x[key]) for key, s in space.spaces.items()]) elif isinstance(space, MultiBinary): return np.asarray(x, dtype=space.dtype).flatten() elif isinstance(space, MultiDiscrete): return np.asarray(x, dtype=space.dtype).flatten() else: raise NotImplementedError def unflatten(space, x): """Unflatten a data point from a space. This reverses the transformation applied by ``flatten()``. You must ensure that the ``space`` argument is the same as for the ``flatten()`` call. Accepts a space and a flattened point. Returns a point with a structure that matches the space. Raises ``NotImplementedError`` if the space is not defined in ``gym.spaces``. """ if isinstance(space, Box): return np.asarray(x, dtype=space.dtype).reshape(space.shape) elif isinstance(space, Discrete): return int(np.nonzero(x)[0][0]) elif isinstance(space, Tuple): dims = [flatdim(s) for s in space.spaces] list_flattened = np.split(x, np.cumsum(dims)[:-1]) list_unflattened = [ unflatten(s, flattened) for flattened, s in zip(list_flattened, space.spaces) ] return tuple(list_unflattened) elif isinstance(space, Dict): dims = [flatdim(s) for s in space.spaces.values()] list_flattened = np.split(x, np.cumsum(dims)[:-1]) list_unflattened = [ (key, unflatten(s, flattened)) for flattened, (key, s) in zip(list_flattened, space.spaces.items()) ] return OrderedDict(list_unflattened) elif isinstance(space, MultiBinary): return np.asarray(x, dtype=space.dtype).reshape(space.shape) elif isinstance(space, MultiDiscrete): return np.asarray(x, dtype=space.dtype).reshape(space.shape) else: raise NotImplementedError def flatten_space(space): """Flatten a space into a single ``Box``. This is equivalent to ``flatten()``, but operates on the space itself. The result always is a `Box` with flat boundaries. The box has exactly ``flatdim(space)`` dimensions. Flattening a sample of the original space has the same effect as taking a sample of the flattenend space. Raises ``NotImplementedError`` if the space is not defined in ``gym.spaces``. Example:: >>> box = Box(0.0, 1.0, shape=(3, 4, 5)) >>> box Box(3, 4, 5) >>> flatten_space(box) Box(60,) >>> flatten(box, box.sample()) in flatten_space(box) True Example that flattens a discrete space:: >>> discrete = Discrete(5) >>> flatten_space(discrete) Box(5,) >>> flatten(box, box.sample()) in flatten_space(box) True Example that recursively flattens a dict:: >>> space = Dict({"position": Discrete(2), ... "velocity": Box(0, 1, shape=(2, 2))}) >>> flatten_space(space) Box(6,) >>> flatten(space, space.sample()) in flatten_space(space) True """ if isinstance(space, Box): return Box(space.low.flatten(), space.high.flatten(), dtype=space.dtype) if isinstance(space, Discrete): return Box(low=0, high=1, shape=(space.n, ), dtype=space.dtype) if isinstance(space, Tuple): space = [flatten_space(s) for s in space.spaces] return Box( low=np.concatenate([s.low for s in space]), high=np.concatenate([s.high for s in space]), dtype=np.result_type(*[s.dtype for s in space]) ) if isinstance(space, Dict): space = [flatten_space(s) for s in space.spaces.values()] return Box( low=np.concatenate([s.low for s in space]), high=np.concatenate([s.high for s in space]), dtype=np.result_type(*[s.dtype for s in space]) ) if isinstance(space, MultiBinary): return Box(low=0, high=1, shape=(space.n, ), dtype=space.dtype ) if isinstance(space, MultiDiscrete): return Box( low=np.zeros_like(space.nvec), high=space.nvec, dtype=space.dtype ) raise NotImplementedError