import numpy as np from gym.envs.mujoco import mujoco_env from gym import utils def mass_center(model): mass = model.body_mass xpos = model.data.xipos return (np.sum(mass * xpos, 0) / np.sum(mass))[0] class HumanoidStandupEnv(mujoco_env.MujocoEnv, utils.EzPickle): def __init__(self): mujoco_env.MujocoEnv.__init__(self, 'humanoidstandup.xml', 5) utils.EzPickle.__init__(self) def _get_obs(self): data = self.model.data return np.concatenate([data.qpos.flat[2:], data.qvel.flat, data.cinert.flat, data.cvel.flat, data.qfrc_actuator.flat, data.cfrc_ext.flat]) def _step(self, a): self.do_simulation(a, self.frame_skip) pos_after = self.model.data.qpos[2][0] data = self.model.data uph_cost = (pos_after - 0) / self.model.opt.timestep quad_ctrl_cost = 0.1 * np.square(data.ctrl).sum() quad_impact_cost = .5e-6 * np.square(data.cfrc_ext).sum() quad_impact_cost = min(quad_impact_cost, 10) reward = uph_cost - quad_ctrl_cost - quad_impact_cost + 1 done = bool(False) return self._get_obs(), reward, done, dict(reward_linup=uph_cost, reward_quadctrl=-quad_ctrl_cost, reward_impact=-quad_impact_cost) def reset_model(self): c = 0.01 self.set_state( self.init_qpos + self.np_random.uniform(low=-c, high=c, size=self.model.nq), self.init_qvel + self.np_random.uniform(low=-c, high=c, size=self.model.nv,) ) return self._get_obs() def viewer_setup(self): self.viewer.cam.trackbodyid = 1 self.viewer.cam.distance = self.model.stat.extent * 1.0 self.viewer.cam.lookat[2] += .8 self.viewer.cam.elevation = -20