import numpy as np from gym import utils from gym.envs.mujoco import mujoco_env class InvertedPendulumEnv(mujoco_env.MujocoEnv, utils.EzPickle): def __init__(self): utils.EzPickle.__init__(self) mujoco_env.MujocoEnv.__init__(self, 'inverted_pendulum.xml', 2) def _step(self, a): reward = 1.0 self.do_simulation(a, self.frame_skip) ob = self._get_obs() notdone = np.isfinite(ob).all() and (np.abs(ob[1]) <= .2) done = not notdone return ob, reward, done, {} def reset_model(self): qpos = self.init_qpos + self.np_random.uniform(size=self.model.nq, low=-0.01, high=0.01) qvel = self.init_qvel + self.np_random.uniform(size=self.model.nv, low=-0.01, high=0.01) self.set_state(qpos, qvel) return self._get_obs() def _get_obs(self): return np.concatenate([self.model.data.qpos, self.model.data.qvel]).ravel() def viewer_setup(self): v = self.viewer v.cam.trackbodyid = 0 v.cam.distance = v.model.stat.extent