Files
Gymnasium/tests/vector/test_sync_vector_env.py

214 lines
6.8 KiB
Python

"""Test the `SyncVectorEnv` implementation."""
import re
import numpy as np
import pytest
from gymnasium.envs.registration import EnvSpec
from gymnasium.spaces import Box, Discrete, MultiDiscrete, Tuple
from gymnasium.vector import SyncVectorEnv
from tests.envs.utils import all_testing_env_specs
from tests.vector.testing_utils import (
CustomSpace,
assert_rng_equal,
make_custom_space_env,
make_env,
)
def test_create_sync_vector_env():
"""Tests creating the sync vector environment."""
env_fns = [make_env("FrozenLake-v1", i) for i in range(8)]
env = SyncVectorEnv(env_fns)
env.close()
assert env.num_envs == 8
def test_reset_sync_vector_env():
"""Tests sync vector `reset` function."""
env_fns = [make_env("CartPole-v1", i) for i in range(8)]
env = SyncVectorEnv(env_fns)
observations, infos = env.reset()
env.close()
assert isinstance(env.observation_space, Box)
assert isinstance(observations, np.ndarray)
assert observations.dtype == env.observation_space.dtype
assert observations.shape == (8,) + env.single_observation_space.shape
assert observations.shape == env.observation_space.shape
del observations
@pytest.mark.parametrize("use_single_action_space", [True, False])
def test_step_sync_vector_env(use_single_action_space):
"""Test sync vector `steps` function."""
env = SyncVectorEnv([make_env("FrozenLake-v1", i) for i in range(8)])
env.reset()
assert isinstance(env.single_action_space, Discrete)
assert isinstance(env.action_space, MultiDiscrete)
if use_single_action_space:
actions = [env.single_action_space.sample() for _ in range(8)]
else:
actions = env.action_space.sample()
observations, rewards, terminations, truncations, _ = env.step(actions)
env.close()
assert isinstance(env.observation_space, MultiDiscrete)
assert isinstance(observations, np.ndarray)
assert observations.dtype == env.observation_space.dtype
assert observations.shape == (8,) + env.single_observation_space.shape
assert observations.shape == env.observation_space.shape
assert isinstance(rewards, np.ndarray)
assert isinstance(rewards[0], (float, np.floating))
assert rewards.ndim == 1
assert rewards.size == 8
assert isinstance(terminations, np.ndarray)
assert terminations.dtype == np.bool_
assert terminations.ndim == 1
assert terminations.size == 8
assert isinstance(truncations, np.ndarray)
assert truncations.dtype == np.bool_
assert truncations.ndim == 1
assert truncations.size == 8
def test_render_sync_vector():
envs = SyncVectorEnv(
[make_env("CartPole-v1", i, render_mode="rgb_array") for i in range(3)]
)
assert envs.render_mode == "rgb_array"
envs.reset()
rendered_frames = envs.render()
assert isinstance(rendered_frames, tuple)
assert len(rendered_frames) == envs.num_envs
assert all(isinstance(frame, np.ndarray) for frame in rendered_frames)
envs = SyncVectorEnv([make_env("CartPole-v1", i) for i in range(3)])
assert envs.render_mode is None
def test_call_sync_vector_env():
"""Test sync vector `call` on sub-environments."""
env_fns = [
make_env("CartPole-v1", i, render_mode="rgb_array_list") for i in range(4)
]
env = SyncVectorEnv(env_fns)
_ = env.reset()
images = env.call("render")
gravity = env.call("gravity")
env.close()
assert isinstance(images, tuple)
assert len(images) == 4
for i in range(4):
assert len(images[i]) == 1
assert isinstance(images[i][0], np.ndarray)
assert isinstance(gravity, tuple)
assert len(gravity) == 4
for i in range(4):
assert isinstance(gravity[i], float)
assert gravity[i] == 9.8
def test_set_attr_sync_vector_env():
"""Test sync vector `set_attr` function."""
env_fns = [make_env("CartPole-v1", i) for i in range(4)]
env = SyncVectorEnv(env_fns)
env.set_attr("gravity", [9.81, 3.72, 8.87, 1.62])
gravity = env.get_attr("gravity")
assert gravity == (9.81, 3.72, 8.87, 1.62)
env.close()
def test_check_spaces_sync_vector_env():
"""Tests the sync vector `check_spaces` function."""
# CartPole-v1 - observation_space: Box(4,), action_space: Discrete(2)
env_fns = [make_env("CartPole-v1", i) for i in range(8)]
# FrozenLake-v1 - Discrete(16), action_space: Discrete(4)
env_fns[1] = make_env("FrozenLake-v1", 1)
with pytest.raises(
AssertionError,
match=re.escape(
"SyncVectorEnv(..., observation_mode='same') however the sub-environments observation spaces are not equivalent."
),
):
env = SyncVectorEnv(env_fns)
env.close()
def test_custom_space_sync_vector_env():
"""Test the use of custom spaces with sync vector environment."""
env_fns = [make_custom_space_env(i) for i in range(4)]
env = SyncVectorEnv(env_fns)
reset_observations, infos = env.reset()
assert isinstance(env.single_action_space, CustomSpace)
assert isinstance(env.action_space, Tuple)
actions = ("action-2", "action-3", "action-5", "action-7")
step_observations, _, _, _, _ = env.step(actions)
env.close()
assert isinstance(env.single_observation_space, CustomSpace)
assert isinstance(env.observation_space, Tuple)
assert isinstance(reset_observations, tuple)
assert reset_observations == ("reset", "reset", "reset", "reset")
assert isinstance(step_observations, tuple)
assert step_observations == (
"step(action-2)",
"step(action-3)",
"step(action-5)",
"step(action-7)",
)
def test_sync_vector_env_seed():
"""Test seeding for sync vector environments."""
env = make_env("BipedalWalker-v3", seed=123)()
sync_vector_env = SyncVectorEnv([make_env("BipedalWalker-v3", seed=123)])
assert_rng_equal(env.action_space.np_random, sync_vector_env.action_space.np_random)
for _ in range(100):
env_action = env.action_space.sample()
vector_action = sync_vector_env.action_space.sample()
assert np.all(env_action == vector_action)
env.close()
@pytest.mark.parametrize(
"spec", all_testing_env_specs, ids=[spec.id for spec in all_testing_env_specs]
)
def test_sync_vector_determinism(spec: EnvSpec, seed: int = 123, n: int = 3):
"""Check that for all environments, the sync vector envs produce the same action samples using the same seeds."""
env_1 = SyncVectorEnv([make_env(spec.id, seed=seed) for _ in range(n)])
env_2 = SyncVectorEnv([make_env(spec.id, seed=seed) for _ in range(n)])
assert_rng_equal(env_1.action_space.np_random, env_2.action_space.np_random)
for _ in range(100):
env_1_samples = env_1.action_space.sample()
env_2_samples = env_2.action_space.sample()
assert np.all(env_1_samples == env_2_samples)
env_1.close()
env_2.close()