mirror of
https://github.com/Farama-Foundation/Gymnasium.git
synced 2025-08-02 14:26:33 +00:00
187 lines
7.5 KiB
Python
187 lines
7.5 KiB
Python
"""Implementation of a space consisting of finitely many elements."""
|
|
|
|
from __future__ import annotations
|
|
|
|
from collections.abc import Iterable, Mapping, Sequence
|
|
from typing import Any
|
|
|
|
import numpy as np
|
|
|
|
from gymnasium.spaces.space import MaskNDArray, Space
|
|
|
|
|
|
class Discrete(Space[np.int64]):
|
|
r"""A space consisting of finitely many elements.
|
|
|
|
This class represents a finite subset of integers, more specifically a set of the form :math:`\{ a, a+1, \dots, a+n-1 \}`.
|
|
|
|
Example:
|
|
>>> from gymnasium.spaces import Discrete
|
|
>>> observation_space = Discrete(2, seed=42) # {0, 1}
|
|
>>> observation_space.sample()
|
|
np.int64(0)
|
|
>>> observation_space = Discrete(3, start=-1, seed=42) # {-1, 0, 1}
|
|
>>> observation_space.sample()
|
|
np.int64(-1)
|
|
>>> observation_space.sample(mask=np.array([0,0,1], dtype=np.int8))
|
|
np.int64(1)
|
|
>>> observation_space.sample(probability=np.array([0,0,1], dtype=np.float64))
|
|
np.int64(1)
|
|
>>> observation_space.sample(probability=np.array([0,0.3,0.7], dtype=np.float64))
|
|
np.int64(1)
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
n: int | np.integer[Any],
|
|
seed: int | np.random.Generator | None = None,
|
|
start: int | np.integer[Any] = 0,
|
|
):
|
|
r"""Constructor of :class:`Discrete` space.
|
|
|
|
This will construct the space :math:`\{\text{start}, ..., \text{start} + n - 1\}`.
|
|
|
|
Args:
|
|
n (int): The number of elements of this space.
|
|
seed: Optionally, you can use this argument to seed the RNG that is used to sample from the ``Dict`` space.
|
|
start (int): The smallest element of this space.
|
|
"""
|
|
assert np.issubdtype(
|
|
type(n), np.integer
|
|
), f"Expects `n` to be an integer, actual dtype: {type(n)}"
|
|
assert n > 0, "n (counts) have to be positive"
|
|
assert np.issubdtype(
|
|
type(start), np.integer
|
|
), f"Expects `start` to be an integer, actual type: {type(start)}"
|
|
|
|
self.n = np.int64(n)
|
|
self.start = np.int64(start)
|
|
super().__init__((), np.int64, seed)
|
|
|
|
@property
|
|
def is_np_flattenable(self):
|
|
"""Checks whether this space can be flattened to a :class:`spaces.Box`."""
|
|
return True
|
|
|
|
def sample(
|
|
self, mask: MaskNDArray | None = None, probability: MaskNDArray | None = None
|
|
) -> np.int64:
|
|
"""Generates a single random sample from this space.
|
|
|
|
A sample will be chosen uniformly at random with the mask if provided, or it will be chosen according to a specified probability distribution if the probability mask is provided.
|
|
|
|
Args:
|
|
mask: An optional mask for if an action can be selected.
|
|
Expected `np.ndarray` of shape ``(n,)`` and dtype ``np.int8`` where ``1`` represents valid actions and ``0`` invalid / infeasible actions.
|
|
If there are no possible actions (i.e. ``np.all(mask == 0)``) then ``space.start`` will be returned.
|
|
probability: An optional probability mask describing the probability of each action being selected.
|
|
Expected `np.ndarray` of shape ``(n,)`` and dtype ``np.float64`` where each value is in the range ``[0, 1]`` and the sum of all values is 1.
|
|
If the values do not sum to 1, an exception will be thrown.
|
|
|
|
Returns:
|
|
A sampled integer from the space
|
|
"""
|
|
if mask is not None and probability is not None:
|
|
raise ValueError(
|
|
f"Only one of `mask` or `probability` can be provided, actual values: mask={mask}, probability={probability}"
|
|
)
|
|
# binary mask sampling
|
|
elif mask is not None:
|
|
assert isinstance(
|
|
mask, np.ndarray
|
|
), f"The expected type of the sample mask is np.ndarray, actual type: {type(mask)}"
|
|
assert (
|
|
mask.dtype == np.int8
|
|
), f"The expected dtype of the sample mask is np.int8, actual dtype: {mask.dtype}"
|
|
assert mask.shape == (
|
|
self.n,
|
|
), f"The expected shape of the sample mask is {(int(self.n),)}, actual shape: {mask.shape}"
|
|
|
|
valid_action_mask = mask == 1
|
|
assert np.all(
|
|
np.logical_or(mask == 0, valid_action_mask)
|
|
), f"All values of the sample mask should be 0 or 1, actual values: {mask}"
|
|
|
|
if np.any(valid_action_mask):
|
|
return self.start + self.np_random.choice(
|
|
np.where(valid_action_mask)[0]
|
|
)
|
|
else:
|
|
return self.start
|
|
# probability mask sampling
|
|
elif probability is not None:
|
|
assert isinstance(
|
|
probability, np.ndarray
|
|
), f"The expected type of the sample probability is np.ndarray, actual type: {type(probability)}"
|
|
assert (
|
|
probability.dtype == np.float64
|
|
), f"The expected dtype of the sample probability is np.float64, actual dtype: {probability.dtype}"
|
|
assert probability.shape == (
|
|
self.n,
|
|
), f"The expected shape of the sample probability is {(int(self.n),)}, actual shape: {probability.shape}"
|
|
|
|
assert np.all(
|
|
np.logical_and(probability >= 0, probability <= 1)
|
|
), f"All values of the sample probability should be between 0 and 1, actual values: {probability}"
|
|
assert np.isclose(
|
|
np.sum(probability), 1
|
|
), f"The sum of the sample probability should be equal to 1, actual sum: {np.sum(probability)}"
|
|
|
|
return self.start + self.np_random.choice(np.arange(self.n), p=probability)
|
|
# uniform sampling
|
|
else:
|
|
return self.start + self.np_random.integers(self.n)
|
|
|
|
def contains(self, x: Any) -> bool:
|
|
"""Return boolean specifying if x is a valid member of this space."""
|
|
if isinstance(x, int):
|
|
as_int64 = np.int64(x)
|
|
elif isinstance(x, (np.generic, np.ndarray)) and (
|
|
np.issubdtype(x.dtype, np.integer) and x.shape == ()
|
|
):
|
|
as_int64 = np.int64(x)
|
|
else:
|
|
return False
|
|
|
|
return bool(self.start <= as_int64 < self.start + self.n)
|
|
|
|
def __repr__(self) -> str:
|
|
"""Gives a string representation of this space."""
|
|
if self.start != 0:
|
|
return f"Discrete({self.n}, start={self.start})"
|
|
return f"Discrete({self.n})"
|
|
|
|
def __eq__(self, other: Any) -> bool:
|
|
"""Check whether ``other`` is equivalent to this instance."""
|
|
return (
|
|
isinstance(other, Discrete)
|
|
and self.n == other.n
|
|
and self.start == other.start
|
|
)
|
|
|
|
def __setstate__(self, state: Iterable[tuple[str, Any]] | Mapping[str, Any]):
|
|
"""Used when loading a pickled space.
|
|
|
|
This method has to be implemented explicitly to allow for loading of legacy states.
|
|
|
|
Args:
|
|
state: The new state
|
|
"""
|
|
# Don't mutate the original state
|
|
state = dict(state)
|
|
|
|
# Allow for loading of legacy states.
|
|
# See https://github.com/openai/gym/pull/2470
|
|
if "start" not in state:
|
|
state["start"] = np.int64(0)
|
|
|
|
super().__setstate__(state)
|
|
|
|
def to_jsonable(self, sample_n: Sequence[np.int64]) -> list[int]:
|
|
"""Converts a list of samples to a list of ints."""
|
|
return [int(x) for x in sample_n]
|
|
|
|
def from_jsonable(self, sample_n: list[int]) -> list[np.int64]:
|
|
"""Converts a list of json samples to a list of np.int64."""
|
|
return [np.int64(x) for x in sample_n]
|