Files
Gymnasium/gym/spaces/utils.py
Mark Towers 0263deb5ab Add support for python 3.6 (#2836)
* Add support for python 3.6

* Add support for python 3.6

* Added check for python 3.6 to not install mujoco as no version exists

* Fixed the install groups for python 3.6

* Re-added python 3.6 support for gym

* black

* Added support for dataclasses through dataclasses module in setup that backports the module

* Fixed install requirements

* Re-added dummy env spec with dataclasses

* Changed type for compatability for python 3.6

* Added a python 3.6 warning

* Fixed python 3.6 typing issue

* Removed __future__ import annotation for python 3.6 support

* Fixed python 3.6 typing
2022-05-25 10:28:19 -04:00

261 lines
7.6 KiB
Python

"""Implementation of utility functions that can be applied to spaces.
These functions mostly take care of flattening and unflattening elements of spaces
to facilitate their usage in learning code.
"""
import operator as op
from collections import OrderedDict
from functools import reduce, singledispatch
from typing import TypeVar, Union, cast
import numpy as np
from gym.spaces import Box, Dict, Discrete, MultiBinary, MultiDiscrete, Space, Tuple
@singledispatch
def flatdim(space: Space) -> int:
"""Return the number of dimensions a flattened equivalent of this space would have.
Example usage::
>>> from gym.spaces import Discrete
>>> space = Dict({"position": Discrete(2), "velocity": Discrete(3)})
>>> flatdim(space)
5
Args:
space: The space to return the number of dimensions of the flattened spaces
Returns:
The number of dimensions for the flattened spaces
Raises:
NotImplementedError: if the space is not defined in ``gym.spaces``.
"""
raise NotImplementedError(f"Unknown space: `{space}`")
@flatdim.register(Box)
@flatdim.register(MultiBinary)
def _flatdim_box_multibinary(space: Union[Box, MultiBinary]) -> int:
return reduce(op.mul, space.shape, 1)
@flatdim.register(Discrete)
def _flatdim_discrete(space: Discrete) -> int:
return int(space.n)
@flatdim.register(MultiDiscrete)
def _flatdim_multidiscrete(space: MultiDiscrete) -> int:
return int(np.sum(space.nvec))
@flatdim.register(Tuple)
def _flatdim_tuple(space: Tuple) -> int:
return sum(flatdim(s) for s in space.spaces)
@flatdim.register(Dict)
def _flatdim_dict(space: Dict) -> int:
return sum(flatdim(s) for s in space.spaces.values())
T = TypeVar("T")
@singledispatch
def flatten(space: Space[T], x: T) -> np.ndarray:
"""Flatten a data point from a space.
This is useful when e.g. points from spaces must be passed to a neural
network, which only understands flat arrays of floats.
Args:
space: The space that ``x`` is flattened by
x: The value to flatten
Returns:
The flattened ``x``, always returns a 1D array.
Raises:
NotImplementedError: If the space is not defined in ``gym.spaces``.
"""
raise NotImplementedError(f"Unknown space: `{space}`")
@flatten.register(Box)
@flatten.register(MultiBinary)
def _flatten_box_multibinary(space, x) -> np.ndarray:
return np.asarray(x, dtype=space.dtype).flatten()
@flatten.register(Discrete)
def _flatten_discrete(space, x) -> np.ndarray:
onehot = np.zeros(space.n, dtype=space.dtype)
onehot[x - space.start] = 1
return onehot
@flatten.register(MultiDiscrete)
def _flatten_multidiscrete(space, x) -> np.ndarray:
offsets = np.zeros((space.nvec.size + 1,), dtype=space.dtype)
offsets[1:] = np.cumsum(space.nvec.flatten())
onehot = np.zeros((offsets[-1],), dtype=space.dtype)
onehot[offsets[:-1] + x.flatten()] = 1
return onehot
@flatten.register(Tuple)
def _flatten_tuple(space, x) -> np.ndarray:
return np.concatenate([flatten(s, x_part) for x_part, s in zip(x, space.spaces)])
@flatten.register(Dict)
def _flatten_dict(space, x) -> np.ndarray:
return np.concatenate([flatten(s, x[key]) for key, s in space.spaces.items()])
@singledispatch
def unflatten(space: Space[T], x: np.ndarray) -> T:
"""Unflatten a data point from a space.
This reverses the transformation applied by :func:`flatten`. You must ensure
that the ``space`` argument is the same as for the :func:`flatten` call.
Args:
space: The space used to unflatten ``x``
x: The array to unflatten
Returns:
A point with a structure that matches the space.
Raises:
NotImplementedError: if the space is not defined in ``gym.spaces``.
"""
raise NotImplementedError(f"Unknown space: `{space}`")
@unflatten.register(Box)
@unflatten.register(MultiBinary)
def _unflatten_box_multibinary(
space: Union[Box, MultiBinary], x: np.ndarray
) -> np.ndarray:
return np.asarray(x, dtype=space.dtype).reshape(space.shape)
@unflatten.register(Discrete)
def _unflatten_discrete(space: Discrete, x: np.ndarray) -> int:
return int(space.start + np.nonzero(x)[0][0])
@unflatten.register(MultiDiscrete)
def _unflatten_multidiscrete(space: MultiDiscrete, x: np.ndarray) -> np.ndarray:
offsets = np.zeros((space.nvec.size + 1,), dtype=space.dtype)
offsets[1:] = np.cumsum(space.nvec.flatten())
(indices,) = cast(type(offsets[:-1]), np.nonzero(x))
return np.asarray(indices - offsets[:-1], dtype=space.dtype).reshape(space.shape)
@unflatten.register(Tuple)
def _unflatten_tuple(space: Tuple, x: np.ndarray) -> tuple:
dims = np.asarray([flatdim(s) for s in space.spaces], dtype=np.int_)
list_flattened = np.split(x, np.cumsum(dims[:-1]))
return tuple(
unflatten(s, flattened) for flattened, s in zip(list_flattened, space.spaces)
)
@unflatten.register(Dict)
def _unflatten_dict(space: Dict, x: np.ndarray) -> dict:
dims = np.asarray([flatdim(s) for s in space.spaces.values()], dtype=np.int_)
list_flattened = np.split(x, np.cumsum(dims[:-1]))
return OrderedDict(
[
(key, unflatten(s, flattened))
for flattened, (key, s) in zip(list_flattened, space.spaces.items())
]
)
@singledispatch
def flatten_space(space: Space) -> Box:
"""Flatten a space into a single ``Box``.
This is equivalent to :func:`flatten`, but operates on the space itself. The
result always is a `Box` with flat boundaries. The box has exactly
:func:`flatdim` dimensions. Flattening a sample of the original space
has the same effect as taking a sample of the flattenend space.
Example::
>>> box = Box(0.0, 1.0, shape=(3, 4, 5))
>>> box
Box(3, 4, 5)
>>> flatten_space(box)
Box(60,)
>>> flatten(box, box.sample()) in flatten_space(box)
True
Example that flattens a discrete space::
>>> discrete = Discrete(5)
>>> flatten_space(discrete)
Box(5,)
>>> flatten(box, box.sample()) in flatten_space(box)
True
Example that recursively flattens a dict::
>>> space = Dict({"position": Discrete(2), "velocity": Box(0, 1, shape=(2, 2))})
>>> flatten_space(space)
Box(6,)
>>> flatten(space, space.sample()) in flatten_space(space)
True
Args:
space: The space to flatten
Returns:
A flattened Box
Raises:
NotImplementedError: if the space is not defined in ``gym.spaces``.
"""
raise NotImplementedError(f"Unknown space: `{space}`")
@flatten_space.register(Box)
def _flatten_space_box(space: Box) -> Box:
return Box(space.low.flatten(), space.high.flatten(), dtype=space.dtype)
@flatten_space.register(Discrete)
@flatten_space.register(MultiBinary)
@flatten_space.register(MultiDiscrete)
def _flatten_space_binary(space: Union[Discrete, MultiBinary, MultiDiscrete]) -> Box:
return Box(low=0, high=1, shape=(flatdim(space),), dtype=space.dtype)
@flatten_space.register(Tuple)
def _flatten_space_tuple(space: Tuple) -> Box:
space_list = [flatten_space(s) for s in space.spaces]
return Box(
low=np.concatenate([s.low for s in space_list]),
high=np.concatenate([s.high for s in space_list]),
dtype=np.result_type(*[s.dtype for s in space_list]),
)
@flatten_space.register(Dict)
def _flatten_space_dict(space: Dict) -> Box:
space_list = [flatten_space(s) for s in space.spaces.values()]
return Box(
low=np.concatenate([s.low for s in space_list]),
high=np.concatenate([s.high for s in space_list]),
dtype=np.result_type(*[s.dtype for s in space_list]),
)