Files
Gymnasium/gym/vector/vector_env.py
Rushiv Arora 0a5f543d6a Vector Api for website (#2764)
* Rephrase

* Rephrase
2022-04-21 11:15:16 -04:00

278 lines
8.7 KiB
Python

from typing import List, Optional, Union
import gym
from gym.logger import deprecation, warn
from gym.spaces import Tuple
from gym.vector.utils.spaces import batch_space
__all__ = ["VectorEnv"]
class VectorEnv(gym.Env):
r"""Base class for vectorized environments. Runs multiple independent copies of the
same environment in parallel. This is not the same as 1 environment that has multiple
sub components, but it is many copies of the same base env.
Each observation returned from vectorized environment is a batch of observations
for each parallel environment. And :meth:`step` is also expected to receive a batch of
actions for each parallel environment.
.. note::
All parallel environments should share the identical observation and action spaces.
In other words, a vector of multiple different environments is not supported.
Parameters
----------
num_envs : int
Number of environments in the vectorized environment.
observation_space : :class:`gym.spaces.Space`
Observation space of a single environment.
action_space : :class:`gym.spaces.Space`
Action space of a single environment.
"""
def __init__(self, num_envs, observation_space, action_space):
self.num_envs = num_envs
self.is_vector_env = True
self.observation_space = batch_space(observation_space, n=num_envs)
self.action_space = batch_space(action_space, n=num_envs)
self.closed = False
self.viewer = None
# The observation and action spaces of a single environment are
# kept in separate properties
self.single_observation_space = observation_space
self.single_action_space = action_space
def reset_async(
self,
seed: Optional[Union[int, List[int]]] = None,
return_info: bool = False,
options: Optional[dict] = None,
):
pass
def reset_wait(
self,
seed: Optional[Union[int, List[int]]] = None,
return_info: bool = False,
options: Optional[dict] = None,
):
raise NotImplementedError()
def reset(
self,
*,
seed: Optional[Union[int, List[int]]] = None,
return_info: bool = False,
options: Optional[dict] = None,
):
r"""Reset all parallel environments and return a batch of initial observations.
Returns
-------
observations : element of :attr:`observation_space`
A batch of observations from the vectorized environment.
"""
self.reset_async(seed=seed, return_info=return_info, options=options)
return self.reset_wait(seed=seed, return_info=return_info, options=options)
def step_async(self, actions):
pass
def step_wait(self, **kwargs):
raise NotImplementedError()
def step(self, actions):
r"""Take an action for each parallel environment.
Parameters
----------
actions : element of :attr:`action_space`
Batch of actions.
Returns
-------
observations : element of :attr:`observation_space`
A batch of observations from the vectorized environment.
rewards : :obj:`np.ndarray`, dtype :obj:`np.float_`
A vector of rewards from the vectorized environment.
dones : :obj:`np.ndarray`, dtype :obj:`np.bool_`
A vector whose entries indicate whether the episode has ended.
infos : list of dict
A list of auxiliary diagnostic information dicts from each parallel environment.
"""
self.step_async(actions)
return self.step_wait()
def call_async(self, name, *args, **kwargs):
pass
def call_wait(self, **kwargs):
raise NotImplementedError()
def call(self, name, *args, **kwargs):
"""Call a method, or get a property, from each parallel environment.
Parameters
----------
name : string
Name of the method or property to call.
*args
Arguments to apply to the method call.
**kwargs
Keywoard arguments to apply to the method call.
Returns
-------
results : list
List of the results of the individual calls to the method or
property for each environment.
"""
self.call_async(name, *args, **kwargs)
return self.call_wait()
def get_attr(self, name):
"""Get a property from each parallel environment.
Parameters
----------
name : string
Name of the property to be get from each individual environment.
"""
return self.call(name)
def set_attr(self, name, values):
"""Set a property in each parallel environment.
Parameters
----------
name : string
Name of the property to be set in each individual environment.
values : list, tuple, or object
Values of the property to be set to. If `values` is a list or
tuple, then it corresponds to the values for each individual
environment, otherwise a single value is set for all environments.
"""
raise NotImplementedError()
def close_extras(self, **kwargs):
r"""Clean up the extra resources e.g. beyond what's in this base class."""
pass
def close(self, **kwargs):
r"""Close all parallel environments and release resources.
It also closes all the existing image viewers, then calls :meth:`close_extras` and set
:attr:`closed` as ``True``.
.. warning::
This function itself does not close the environments, it should be handled
in :meth:`close_extras`. This is generic for both synchronous and asynchronous
vectorized environments.
.. note::
This will be automatically called when garbage collected or program exited.
"""
if self.closed:
return
if self.viewer is not None:
self.viewer.close()
self.close_extras(**kwargs)
self.closed = True
def seed(self, seed=None):
"""Set the random seed in all parallel environments.
Parameters
----------
seed : list of int, or int, optional
Random seed for each parallel environment. If ``seed`` is a list of
length ``num_envs``, then the items of the list are chosen as random
seeds. If ``seed`` is an int, then each parallel environment uses the random
seed ``seed + n``, where ``n`` is the index of the parallel environment
(between ``0`` and ``num_envs - 1``).
"""
deprecation(
"Function `env.seed(seed)` is marked as deprecated and will be removed in the future. "
"Please use `env.reset(seed=seed) instead in VectorEnvs."
)
def __del__(self):
if not getattr(self, "closed", True):
self.close()
def __repr__(self):
if self.spec is None:
return f"{self.__class__.__name__}({self.num_envs})"
else:
return f"{self.__class__.__name__}({self.spec.id}, {self.num_envs})"
class VectorEnvWrapper(VectorEnv):
r"""Wraps the vectorized environment to allow a modular transformation.
This class is the base class for all wrappers for vectorized environments. The subclass
could override some methods to change the behavior of the original vectorized environment
without touching the original code.
.. note::
Don't forget to call ``super().__init__(env)`` if the subclass overrides :meth:`__init__`.
"""
def __init__(self, env):
assert isinstance(env, VectorEnv)
self.env = env
# explicitly forward the methods defined in VectorEnv
# to self.env (instead of the base class)
def reset_async(self, **kwargs):
return self.env.reset_async(**kwargs)
def reset_wait(self, **kwargs):
return self.env.reset_wait(**kwargs)
def step_async(self, actions):
return self.env.step_async(actions)
def step_wait(self):
return self.env.step_wait()
def close(self, **kwargs):
return self.env.close(**kwargs)
def close_extras(self, **kwargs):
return self.env.close_extras(**kwargs)
def seed(self, seed=None):
return self.env.seed(seed)
# implicitly forward all other methods and attributes to self.env
def __getattr__(self, name):
if name.startswith("_"):
raise AttributeError(f"attempted to get missing private attribute '{name}'")
return getattr(self.env, name)
@property
def unwrapped(self):
return self.env.unwrapped
def __repr__(self):
return f"<{self.__class__.__name__}, {self.env}>"