mirror of
https://github.com/Farama-Foundation/Gymnasium.git
synced 2025-08-05 15:31:44 +00:00
* Remove additional ignores from flake8 * Remove all unused imports * Remove all unused imports * Update flake8 and pyupgrade * F841, removed unused variables * E731, removed lambda assignment to variables * Remove E731, F403, F405, F524 * Remove E722, bare exceptions * Remove E712, compare variable == True or == False to is True or is False * Remove E402, module level import not at top of file * Added --pre-file-ignores * Add --per-file-ignores removing E741, E302 and E704 * Add E741, do not use variables named ‘l’, ‘O’, or ‘I’ to ignore issues in classic control * Fixed issues for pytest==6.2 * Remove unnecessary # noqa * Edit comment with the removal of E302 * Added warnings and declared module, attr for pyright type hinting * Remove unused import * Removed flake8 E302 * Updated flake8 from 3.9.2 to 4.0.1 * Remove unused variable
144 lines
4.3 KiB
Python
144 lines
4.3 KiB
Python
from collections import OrderedDict
|
|
from functools import singledispatch
|
|
|
|
import numpy as np
|
|
|
|
from gym.spaces import Box, Dict, Discrete, MultiBinary, MultiDiscrete, Space, Tuple
|
|
|
|
__all__ = ["concatenate", "create_empty_array"]
|
|
|
|
|
|
@singledispatch
|
|
def concatenate(space, items, out):
|
|
"""Concatenate multiple samples from space into a single object.
|
|
|
|
Parameters
|
|
----------
|
|
items : iterable of samples of `space`
|
|
Samples to be concatenated.
|
|
|
|
out : tuple, dict, or `np.ndarray`
|
|
The output object. This object is a (possibly nested) numpy array.
|
|
|
|
space : `gym.spaces.Space` instance
|
|
Observation space of a single environment in the vectorized environment.
|
|
|
|
Returns
|
|
-------
|
|
out : tuple, dict, or `np.ndarray`
|
|
The output object. This object is a (possibly nested) numpy array.
|
|
|
|
Example
|
|
-------
|
|
>>> from gym.spaces import Box
|
|
>>> space = Box(low=0, high=1, shape=(3,), dtype=np.float32)
|
|
>>> out = np.zeros((2, 3), dtype=np.float32)
|
|
>>> items = [space.sample() for _ in range(2)]
|
|
>>> concatenate(items, out, space)
|
|
array([[0.6348213 , 0.28607962, 0.60760117],
|
|
[0.87383074, 0.192658 , 0.2148103 ]], dtype=float32)
|
|
"""
|
|
assert isinstance(items, (list, tuple))
|
|
raise ValueError(
|
|
f"Space of type `{type(space)}` is not a valid `gym.Space` instance."
|
|
)
|
|
|
|
|
|
@concatenate.register(Box)
|
|
@concatenate.register(Discrete)
|
|
@concatenate.register(MultiDiscrete)
|
|
@concatenate.register(MultiBinary)
|
|
def _concatenate_base(space, items, out):
|
|
return np.stack(items, axis=0, out=out)
|
|
|
|
|
|
@concatenate.register(Tuple)
|
|
def _concatenate_tuple(space, items, out):
|
|
return tuple(
|
|
concatenate(subspace, [item[i] for item in items], out[i])
|
|
for (i, subspace) in enumerate(space.spaces)
|
|
)
|
|
|
|
|
|
@concatenate.register(Dict)
|
|
def _concatenate_dict(space, items, out):
|
|
return OrderedDict(
|
|
[
|
|
(key, concatenate(subspace, [item[key] for item in items], out[key]))
|
|
for (key, subspace) in space.spaces.items()
|
|
]
|
|
)
|
|
|
|
|
|
@concatenate.register(Space)
|
|
def _concatenate_custom(space, items, out):
|
|
return tuple(items)
|
|
|
|
|
|
@singledispatch
|
|
def create_empty_array(space, n=1, fn=np.zeros):
|
|
"""Create an empty (possibly nested) numpy array.
|
|
|
|
Parameters
|
|
----------
|
|
space : `gym.spaces.Space` instance
|
|
Observation space of a single environment in the vectorized environment.
|
|
|
|
n : int
|
|
Number of environments in the vectorized environment. If `None`, creates
|
|
an empty sample from `space`.
|
|
|
|
fn : callable
|
|
Function to apply when creating the empty numpy array. Examples of such
|
|
functions are `np.empty` or `np.zeros`.
|
|
|
|
Returns
|
|
-------
|
|
out : tuple, dict, or `np.ndarray`
|
|
The output object. This object is a (possibly nested) numpy array.
|
|
|
|
Example
|
|
-------
|
|
>>> from gym.spaces import Box, Dict
|
|
>>> space = Dict({
|
|
... 'position': Box(low=0, high=1, shape=(3,), dtype=np.float32),
|
|
... 'velocity': Box(low=0, high=1, shape=(2,), dtype=np.float32)})
|
|
>>> create_empty_array(space, n=2, fn=np.zeros)
|
|
OrderedDict([('position', array([[0., 0., 0.],
|
|
[0., 0., 0.]], dtype=float32)),
|
|
('velocity', array([[0., 0.],
|
|
[0., 0.]], dtype=float32))])
|
|
"""
|
|
raise ValueError(
|
|
f"Space of type `{type(space)}` is not a valid `gym.Space` instance."
|
|
)
|
|
|
|
|
|
@create_empty_array.register(Box)
|
|
@create_empty_array.register(Discrete)
|
|
@create_empty_array.register(MultiDiscrete)
|
|
@create_empty_array.register(MultiBinary)
|
|
def _create_empty_array_base(space, n=1, fn=np.zeros):
|
|
shape = space.shape if (n is None) else (n,) + space.shape
|
|
return fn(shape, dtype=space.dtype)
|
|
|
|
|
|
@create_empty_array.register(Tuple)
|
|
def _create_empty_array_tuple(space, n=1, fn=np.zeros):
|
|
return tuple(create_empty_array(subspace, n=n, fn=fn) for subspace in space.spaces)
|
|
|
|
|
|
@create_empty_array.register(Dict)
|
|
def _create_empty_array_dict(space, n=1, fn=np.zeros):
|
|
return OrderedDict(
|
|
[
|
|
(key, create_empty_array(subspace, n=n, fn=fn))
|
|
for (key, subspace) in space.spaces.items()
|
|
]
|
|
)
|
|
|
|
|
|
@create_empty_array.register(Space)
|
|
def _create_empty_array_custom(space, n=1, fn=np.zeros):
|
|
return None
|