Files
Gymnasium/gym/vector/utils/spaces.py
Mark Towers 273e3f22ce Updated docstrings using darglint (#2827)
* Updated docstrings using darglint, ignoring 402 and 202 plus shortened lines into multiple where they were overflowing

* Remove abstract method decorators, for a future PR

* Add __future__ import annotation for python 3.7+ notion

* Added missing bracket

* Fix minor docstring tables
2022-05-25 09:46:41 -04:00

211 lines
6.2 KiB
Python

"""Utility functions for gym spaces: batch space and iterator."""
from collections import OrderedDict
from copy import deepcopy
from functools import singledispatch
from typing import Iterator
import numpy as np
from gym.error import CustomSpaceError
from gym.spaces import Box, Dict, Discrete, MultiBinary, MultiDiscrete, Space, Tuple
_BaseGymSpaces = (Box, Discrete, MultiDiscrete, MultiBinary)
__all__ = ["_BaseGymSpaces", "batch_space", "iterate"]
@singledispatch
def batch_space(space: Space, n: int = 1) -> Space:
"""Create a (batched) space, containing multiple copies of a single space.
Example::
>>> from gym.spaces import Box, Dict
>>> space = Dict({
... 'position': Box(low=0, high=1, shape=(3,), dtype=np.float32),
... 'velocity': Box(low=0, high=1, shape=(2,), dtype=np.float32)
... })
>>> batch_space(space, n=5)
Dict(position:Box(5, 3), velocity:Box(5, 2))
Args:
space: Space (e.g. the observation space) for a single environment in the vectorized environment.
n: Number of environments in the vectorized environment.
Returns:
Space (e.g. the observation space) for a batch of environments in the vectorized environment.
Raises:
ValueError: Cannot batch space that is not a valid :class:`gym.Space` instance
"""
raise ValueError(
f"Cannot batch space with type `{type(space)}`. The space must be a valid `gym.Space` instance."
)
@batch_space.register(Box)
def _batch_space_box(space, n=1):
repeats = tuple([n] + [1] * space.low.ndim)
low, high = np.tile(space.low, repeats), np.tile(space.high, repeats)
return Box(low=low, high=high, dtype=space.dtype, seed=deepcopy(space.np_random))
@batch_space.register(Discrete)
def _batch_space_discrete(space, n=1):
if space.start == 0:
return MultiDiscrete(
np.full((n,), space.n, dtype=space.dtype),
dtype=space.dtype,
seed=deepcopy(space.np_random),
)
else:
return Box(
low=space.start,
high=space.start + space.n - 1,
shape=(n,),
dtype=space.dtype,
seed=deepcopy(space.np_random),
)
@batch_space.register(MultiDiscrete)
def _batch_space_multidiscrete(space, n=1):
repeats = tuple([n] + [1] * space.nvec.ndim)
high = np.tile(space.nvec, repeats) - 1
return Box(
low=np.zeros_like(high),
high=high,
dtype=space.dtype,
seed=deepcopy(space.np_random),
)
@batch_space.register(MultiBinary)
def _batch_space_multibinary(space, n=1):
return Box(
low=0,
high=1,
shape=(n,) + space.shape,
dtype=space.dtype,
seed=deepcopy(space.np_random),
)
@batch_space.register(Tuple)
def _batch_space_tuple(space, n=1):
return Tuple(
tuple(batch_space(subspace, n=n) for subspace in space.spaces),
seed=deepcopy(space.np_random),
)
@batch_space.register(Dict)
def _batch_space_dict(space, n=1):
return Dict(
OrderedDict(
[
(key, batch_space(subspace, n=n))
for (key, subspace) in space.spaces.items()
]
),
seed=deepcopy(space.np_random),
)
@batch_space.register(Space)
def _batch_space_custom(space, n=1):
# Without deepcopy, then the space.np_random is batched_space.spaces[0].np_random
# Which is an issue if you are sampling actions of both the original space and the batched space
batched_space = Tuple(
tuple(deepcopy(space) for _ in range(n)), seed=deepcopy(space.np_random)
)
new_seeds = list(map(int, batched_space.np_random.integers(0, 1e8, n)))
batched_space.seed(new_seeds)
return batched_space
@singledispatch
def iterate(space: Space, items) -> Iterator:
"""Iterate over the elements of a (batched) space.
Example::
>>> from gym.spaces import Box, Dict
>>> space = Dict({
... 'position': Box(low=0, high=1, shape=(2, 3), dtype=np.float32),
... 'velocity': Box(low=0, high=1, shape=(2, 2), dtype=np.float32)})
>>> items = space.sample()
>>> it = iterate(space, items)
>>> next(it)
{'position': array([-0.99644893, -0.08304597, -0.7238421 ], dtype=float32),
'velocity': array([0.35848552, 0.1533453 ], dtype=float32)}
>>> next(it)
{'position': array([-0.67958736, -0.49076623, 0.38661423], dtype=float32),
'velocity': array([0.7975036 , 0.93317133], dtype=float32)}
>>> next(it)
StopIteration
Args:
space: Space to which `items` belong to.
items: Items to be iterated over.
Returns:
Iterator over the elements in `items`.
Raises:
ValueError: Space is not an instance of :class:`gym.Space`
"""
raise ValueError(
f"Space of type `{type(space)}` is not a valid `gym.Space` instance."
)
@iterate.register(Discrete)
def _iterate_discrete(space, items):
raise TypeError("Unable to iterate over a space of type `Discrete`.")
@iterate.register(Box)
@iterate.register(MultiDiscrete)
@iterate.register(MultiBinary)
def _iterate_base(space, items):
try:
return iter(items)
except TypeError:
raise TypeError(f"Unable to iterate over the following elements: {items}")
@iterate.register(Tuple)
def _iterate_tuple(space, items):
# If this is a tuple of custom subspaces only, then simply iterate over items
if all(
isinstance(subspace, Space)
and (not isinstance(subspace, _BaseGymSpaces + (Tuple, Dict)))
for subspace in space.spaces
):
return iter(items)
return zip(
*[iterate(subspace, items[i]) for i, subspace in enumerate(space.spaces)]
)
@iterate.register(Dict)
def _iterate_dict(space, items):
keys, values = zip(
*[
(key, iterate(subspace, items[key]))
for key, subspace in space.spaces.items()
]
)
for item in zip(*values):
yield OrderedDict([(key, value) for (key, value) in zip(keys, item)])
@iterate.register(Space)
def _iterate_custom(space, items):
raise CustomSpaceError(
f"Unable to iterate over {items}, since {space} "
"is a custom `gym.Space` instance (i.e. not one of "
"`Box`, `Dict`, etc...)."
)