Files
Gymnasium/gym/envs/box2d/bipedal_walker.py
Ahmed Omar 2754d9737e removed calls to reset from init (#2394)
* removed all calls to reset

* passing tests

* fix off-by-one error

* revert

* merge master into branch

* add OrderEnforcing Wrapper

* add orderenforcing to the docs

* add option for disabling

* add argument to EnvSpec
2021-09-16 10:16:49 -04:00

659 lines
24 KiB
Python

import sys
import math
import numpy as np
import Box2D
from Box2D.b2 import (
edgeShape,
circleShape,
fixtureDef,
polygonShape,
revoluteJointDef,
contactListener,
)
import gym
from gym import spaces
from gym.utils import colorize, seeding, EzPickle
# This is simple 4-joints walker robot environment.
#
# There are two versions:
#
# - Normal, with slightly uneven terrain.
#
# - Hardcore with ladders, stumps, pitfalls.
#
# Reward is given for moving forward, total 300+ points up to the far end. If the robot falls,
# it gets -100. Applying motor torque costs a small amount of points, more optimal agent
# will get better score.
#
# Heuristic is provided for testing, it's also useful to get demonstrations to
# learn from. To run heuristic:
#
# python gym/envs/box2d/bipedal_walker.py
#
# State consists of hull angle speed, angular velocity, horizontal speed, vertical speed,
# position of joints and joints angular speed, legs contact with ground, and 10 lidar
# rangefinder measurements to help to deal with the hardcore version. There's no coordinates
# in the state vector. Lidar is less useful in normal version, but it works.
#
# To solve the game you need to get 300 points in 1600 time steps.
#
# To solve hardcore version you need 300 points in 2000 time steps.
#
# Created by Oleg Klimov. Licensed on the same terms as the rest of OpenAI Gym.
FPS = 50
SCALE = 30.0 # affects how fast-paced the game is, forces should be adjusted as well
MOTORS_TORQUE = 80
SPEED_HIP = 4
SPEED_KNEE = 6
LIDAR_RANGE = 160 / SCALE
INITIAL_RANDOM = 5
HULL_POLY = [(-30, +9), (+6, +9), (+34, +1), (+34, -8), (-30, -8)]
LEG_DOWN = -8 / SCALE
LEG_W, LEG_H = 8 / SCALE, 34 / SCALE
VIEWPORT_W = 600
VIEWPORT_H = 400
TERRAIN_STEP = 14 / SCALE
TERRAIN_LENGTH = 200 # in steps
TERRAIN_HEIGHT = VIEWPORT_H / SCALE / 4
TERRAIN_GRASS = 10 # low long are grass spots, in steps
TERRAIN_STARTPAD = 20 # in steps
FRICTION = 2.5
HULL_FD = fixtureDef(
shape=polygonShape(vertices=[(x / SCALE, y / SCALE) for x, y in HULL_POLY]),
density=5.0,
friction=0.1,
categoryBits=0x0020,
maskBits=0x001, # collide only with ground
restitution=0.0,
) # 0.99 bouncy
LEG_FD = fixtureDef(
shape=polygonShape(box=(LEG_W / 2, LEG_H / 2)),
density=1.0,
restitution=0.0,
categoryBits=0x0020,
maskBits=0x001,
)
LOWER_FD = fixtureDef(
shape=polygonShape(box=(0.8 * LEG_W / 2, LEG_H / 2)),
density=1.0,
restitution=0.0,
categoryBits=0x0020,
maskBits=0x001,
)
class ContactDetector(contactListener):
def __init__(self, env):
contactListener.__init__(self)
self.env = env
def BeginContact(self, contact):
if (
self.env.hull == contact.fixtureA.body
or self.env.hull == contact.fixtureB.body
):
self.env.game_over = True
for leg in [self.env.legs[1], self.env.legs[3]]:
if leg in [contact.fixtureA.body, contact.fixtureB.body]:
leg.ground_contact = True
def EndContact(self, contact):
for leg in [self.env.legs[1], self.env.legs[3]]:
if leg in [contact.fixtureA.body, contact.fixtureB.body]:
leg.ground_contact = False
class BipedalWalker(gym.Env, EzPickle):
metadata = {"render.modes": ["human", "rgb_array"], "video.frames_per_second": FPS}
hardcore = False
def __init__(self):
EzPickle.__init__(self)
self.seed()
self.viewer = None
self.world = Box2D.b2World()
self.terrain = None
self.hull = None
self.prev_shaping = None
self.fd_polygon = fixtureDef(
shape=polygonShape(vertices=[(0, 0), (1, 0), (1, -1), (0, -1)]),
friction=FRICTION,
)
self.fd_edge = fixtureDef(
shape=edgeShape(vertices=[(0, 0), (1, 1)]),
friction=FRICTION,
categoryBits=0x0001,
)
high = np.array([np.inf] * 24).astype(np.float32)
self.action_space = spaces.Box(
np.array([-1, -1, -1, -1]).astype(np.float32),
np.array([1, 1, 1, 1]).astype(np.float32),
)
self.observation_space = spaces.Box(-high, high)
def seed(self, seed=None):
self.np_random, seed = seeding.np_random(seed)
return [seed]
def _destroy(self):
if not self.terrain:
return
self.world.contactListener = None
for t in self.terrain:
self.world.DestroyBody(t)
self.terrain = []
self.world.DestroyBody(self.hull)
self.hull = None
for leg in self.legs:
self.world.DestroyBody(leg)
self.legs = []
self.joints = []
def _generate_terrain(self, hardcore):
GRASS, STUMP, STAIRS, PIT, _STATES_ = range(5)
state = GRASS
velocity = 0.0
y = TERRAIN_HEIGHT
counter = TERRAIN_STARTPAD
oneshot = False
self.terrain = []
self.terrain_x = []
self.terrain_y = []
for i in range(TERRAIN_LENGTH):
x = i * TERRAIN_STEP
self.terrain_x.append(x)
if state == GRASS and not oneshot:
velocity = 0.8 * velocity + 0.01 * np.sign(TERRAIN_HEIGHT - y)
if i > TERRAIN_STARTPAD:
velocity += self.np_random.uniform(-1, 1) / SCALE # 1
y += velocity
elif state == PIT and oneshot:
counter = self.np_random.randint(3, 5)
poly = [
(x, y),
(x + TERRAIN_STEP, y),
(x + TERRAIN_STEP, y - 4 * TERRAIN_STEP),
(x, y - 4 * TERRAIN_STEP),
]
self.fd_polygon.shape.vertices = poly
t = self.world.CreateStaticBody(fixtures=self.fd_polygon)
t.color1, t.color2 = (1, 1, 1), (0.6, 0.6, 0.6)
self.terrain.append(t)
self.fd_polygon.shape.vertices = [
(p[0] + TERRAIN_STEP * counter, p[1]) for p in poly
]
t = self.world.CreateStaticBody(fixtures=self.fd_polygon)
t.color1, t.color2 = (1, 1, 1), (0.6, 0.6, 0.6)
self.terrain.append(t)
counter += 2
original_y = y
elif state == PIT and not oneshot:
y = original_y
if counter > 1:
y -= 4 * TERRAIN_STEP
elif state == STUMP and oneshot:
counter = self.np_random.randint(1, 3)
poly = [
(x, y),
(x + counter * TERRAIN_STEP, y),
(x + counter * TERRAIN_STEP, y + counter * TERRAIN_STEP),
(x, y + counter * TERRAIN_STEP),
]
self.fd_polygon.shape.vertices = poly
t = self.world.CreateStaticBody(fixtures=self.fd_polygon)
t.color1, t.color2 = (1, 1, 1), (0.6, 0.6, 0.6)
self.terrain.append(t)
elif state == STAIRS and oneshot:
stair_height = +1 if self.np_random.rand() > 0.5 else -1
stair_width = self.np_random.randint(4, 5)
stair_steps = self.np_random.randint(3, 5)
original_y = y
for s in range(stair_steps):
poly = [
(
x + (s * stair_width) * TERRAIN_STEP,
y + (s * stair_height) * TERRAIN_STEP,
),
(
x + ((1 + s) * stair_width) * TERRAIN_STEP,
y + (s * stair_height) * TERRAIN_STEP,
),
(
x + ((1 + s) * stair_width) * TERRAIN_STEP,
y + (-1 + s * stair_height) * TERRAIN_STEP,
),
(
x + (s * stair_width) * TERRAIN_STEP,
y + (-1 + s * stair_height) * TERRAIN_STEP,
),
]
self.fd_polygon.shape.vertices = poly
t = self.world.CreateStaticBody(fixtures=self.fd_polygon)
t.color1, t.color2 = (1, 1, 1), (0.6, 0.6, 0.6)
self.terrain.append(t)
counter = stair_steps * stair_width
elif state == STAIRS and not oneshot:
s = stair_steps * stair_width - counter - stair_height
n = s / stair_width
y = original_y + (n * stair_height) * TERRAIN_STEP
oneshot = False
self.terrain_y.append(y)
counter -= 1
if counter == 0:
counter = self.np_random.randint(TERRAIN_GRASS / 2, TERRAIN_GRASS)
if state == GRASS and hardcore:
state = self.np_random.randint(1, _STATES_)
oneshot = True
else:
state = GRASS
oneshot = True
self.terrain_poly = []
for i in range(TERRAIN_LENGTH - 1):
poly = [
(self.terrain_x[i], self.terrain_y[i]),
(self.terrain_x[i + 1], self.terrain_y[i + 1]),
]
self.fd_edge.shape.vertices = poly
t = self.world.CreateStaticBody(fixtures=self.fd_edge)
color = (0.3, 1.0 if i % 2 == 0 else 0.8, 0.3)
t.color1 = color
t.color2 = color
self.terrain.append(t)
color = (0.4, 0.6, 0.3)
poly += [(poly[1][0], 0), (poly[0][0], 0)]
self.terrain_poly.append((poly, color))
self.terrain.reverse()
def _generate_clouds(self):
# Sorry for the clouds, couldn't resist
self.cloud_poly = []
for i in range(TERRAIN_LENGTH // 20):
x = self.np_random.uniform(0, TERRAIN_LENGTH) * TERRAIN_STEP
y = VIEWPORT_H / SCALE * 3 / 4
poly = [
(
x
+ 15 * TERRAIN_STEP * math.sin(3.14 * 2 * a / 5)
+ self.np_random.uniform(0, 5 * TERRAIN_STEP),
y
+ 5 * TERRAIN_STEP * math.cos(3.14 * 2 * a / 5)
+ self.np_random.uniform(0, 5 * TERRAIN_STEP),
)
for a in range(5)
]
x1 = min([p[0] for p in poly])
x2 = max([p[0] for p in poly])
self.cloud_poly.append((poly, x1, x2))
def reset(self):
self._destroy()
self.world.contactListener_bug_workaround = ContactDetector(self)
self.world.contactListener = self.world.contactListener_bug_workaround
self.game_over = False
self.prev_shaping = None
self.scroll = 0.0
self.lidar_render = 0
W = VIEWPORT_W / SCALE
H = VIEWPORT_H / SCALE
self._generate_terrain(self.hardcore)
self._generate_clouds()
init_x = TERRAIN_STEP * TERRAIN_STARTPAD / 2
init_y = TERRAIN_HEIGHT + 2 * LEG_H
self.hull = self.world.CreateDynamicBody(
position=(init_x, init_y), fixtures=HULL_FD
)
self.hull.color1 = (0.5, 0.4, 0.9)
self.hull.color2 = (0.3, 0.3, 0.5)
self.hull.ApplyForceToCenter(
(self.np_random.uniform(-INITIAL_RANDOM, INITIAL_RANDOM), 0), True
)
self.legs = []
self.joints = []
for i in [-1, +1]:
leg = self.world.CreateDynamicBody(
position=(init_x, init_y - LEG_H / 2 - LEG_DOWN),
angle=(i * 0.05),
fixtures=LEG_FD,
)
leg.color1 = (0.6 - i / 10.0, 0.3 - i / 10.0, 0.5 - i / 10.0)
leg.color2 = (0.4 - i / 10.0, 0.2 - i / 10.0, 0.3 - i / 10.0)
rjd = revoluteJointDef(
bodyA=self.hull,
bodyB=leg,
localAnchorA=(0, LEG_DOWN),
localAnchorB=(0, LEG_H / 2),
enableMotor=True,
enableLimit=True,
maxMotorTorque=MOTORS_TORQUE,
motorSpeed=i,
lowerAngle=-0.8,
upperAngle=1.1,
)
self.legs.append(leg)
self.joints.append(self.world.CreateJoint(rjd))
lower = self.world.CreateDynamicBody(
position=(init_x, init_y - LEG_H * 3 / 2 - LEG_DOWN),
angle=(i * 0.05),
fixtures=LOWER_FD,
)
lower.color1 = (0.6 - i / 10.0, 0.3 - i / 10.0, 0.5 - i / 10.0)
lower.color2 = (0.4 - i / 10.0, 0.2 - i / 10.0, 0.3 - i / 10.0)
rjd = revoluteJointDef(
bodyA=leg,
bodyB=lower,
localAnchorA=(0, -LEG_H / 2),
localAnchorB=(0, LEG_H / 2),
enableMotor=True,
enableLimit=True,
maxMotorTorque=MOTORS_TORQUE,
motorSpeed=1,
lowerAngle=-1.6,
upperAngle=-0.1,
)
lower.ground_contact = False
self.legs.append(lower)
self.joints.append(self.world.CreateJoint(rjd))
self.drawlist = self.terrain + self.legs + [self.hull]
class LidarCallback(Box2D.b2.rayCastCallback):
def ReportFixture(self, fixture, point, normal, fraction):
if (fixture.filterData.categoryBits & 1) == 0:
return -1
self.p2 = point
self.fraction = fraction
return fraction
self.lidar = [LidarCallback() for _ in range(10)]
return self.step(np.array([0, 0, 0, 0]))[0]
def step(self, action):
# self.hull.ApplyForceToCenter((0, 20), True) -- Uncomment this to receive a bit of stability help
control_speed = False # Should be easier as well
if control_speed:
self.joints[0].motorSpeed = float(SPEED_HIP * np.clip(action[0], -1, 1))
self.joints[1].motorSpeed = float(SPEED_KNEE * np.clip(action[1], -1, 1))
self.joints[2].motorSpeed = float(SPEED_HIP * np.clip(action[2], -1, 1))
self.joints[3].motorSpeed = float(SPEED_KNEE * np.clip(action[3], -1, 1))
else:
self.joints[0].motorSpeed = float(SPEED_HIP * np.sign(action[0]))
self.joints[0].maxMotorTorque = float(
MOTORS_TORQUE * np.clip(np.abs(action[0]), 0, 1)
)
self.joints[1].motorSpeed = float(SPEED_KNEE * np.sign(action[1]))
self.joints[1].maxMotorTorque = float(
MOTORS_TORQUE * np.clip(np.abs(action[1]), 0, 1)
)
self.joints[2].motorSpeed = float(SPEED_HIP * np.sign(action[2]))
self.joints[2].maxMotorTorque = float(
MOTORS_TORQUE * np.clip(np.abs(action[2]), 0, 1)
)
self.joints[3].motorSpeed = float(SPEED_KNEE * np.sign(action[3]))
self.joints[3].maxMotorTorque = float(
MOTORS_TORQUE * np.clip(np.abs(action[3]), 0, 1)
)
self.world.Step(1.0 / FPS, 6 * 30, 2 * 30)
pos = self.hull.position
vel = self.hull.linearVelocity
for i in range(10):
self.lidar[i].fraction = 1.0
self.lidar[i].p1 = pos
self.lidar[i].p2 = (
pos[0] + math.sin(1.5 * i / 10.0) * LIDAR_RANGE,
pos[1] - math.cos(1.5 * i / 10.0) * LIDAR_RANGE,
)
self.world.RayCast(self.lidar[i], self.lidar[i].p1, self.lidar[i].p2)
state = [
self.hull.angle, # Normal angles up to 0.5 here, but sure more is possible.
2.0 * self.hull.angularVelocity / FPS,
0.3 * vel.x * (VIEWPORT_W / SCALE) / FPS, # Normalized to get -1..1 range
0.3 * vel.y * (VIEWPORT_H / SCALE) / FPS,
self.joints[
0
].angle, # This will give 1.1 on high up, but it's still OK (and there should be spikes on hiting the ground, that's normal too)
self.joints[0].speed / SPEED_HIP,
self.joints[1].angle + 1.0,
self.joints[1].speed / SPEED_KNEE,
1.0 if self.legs[1].ground_contact else 0.0,
self.joints[2].angle,
self.joints[2].speed / SPEED_HIP,
self.joints[3].angle + 1.0,
self.joints[3].speed / SPEED_KNEE,
1.0 if self.legs[3].ground_contact else 0.0,
]
state += [l.fraction for l in self.lidar]
assert len(state) == 24
self.scroll = pos.x - VIEWPORT_W / SCALE / 5
shaping = (
130 * pos[0] / SCALE
) # moving forward is a way to receive reward (normalized to get 300 on completion)
shaping -= 5.0 * abs(
state[0]
) # keep head straight, other than that and falling, any behavior is unpunished
reward = 0
if self.prev_shaping is not None:
reward = shaping - self.prev_shaping
self.prev_shaping = shaping
for a in action:
reward -= 0.00035 * MOTORS_TORQUE * np.clip(np.abs(a), 0, 1)
# normalized to about -50.0 using heuristic, more optimal agent should spend less
done = False
if self.game_over or pos[0] < 0:
reward = -100
done = True
if pos[0] > (TERRAIN_LENGTH - TERRAIN_GRASS) * TERRAIN_STEP:
done = True
return np.array(state, dtype=np.float32), reward, done, {}
def render(self, mode="human"):
from gym.envs.classic_control import rendering
if self.viewer is None:
self.viewer = rendering.Viewer(VIEWPORT_W, VIEWPORT_H)
self.viewer.set_bounds(
self.scroll, VIEWPORT_W / SCALE + self.scroll, 0, VIEWPORT_H / SCALE
)
self.viewer.draw_polygon(
[
(self.scroll, 0),
(self.scroll + VIEWPORT_W / SCALE, 0),
(self.scroll + VIEWPORT_W / SCALE, VIEWPORT_H / SCALE),
(self.scroll, VIEWPORT_H / SCALE),
],
color=(0.9, 0.9, 1.0),
)
for poly, x1, x2 in self.cloud_poly:
if x2 < self.scroll / 2:
continue
if x1 > self.scroll / 2 + VIEWPORT_W / SCALE:
continue
self.viewer.draw_polygon(
[(p[0] + self.scroll / 2, p[1]) for p in poly], color=(1, 1, 1)
)
for poly, color in self.terrain_poly:
if poly[1][0] < self.scroll:
continue
if poly[0][0] > self.scroll + VIEWPORT_W / SCALE:
continue
self.viewer.draw_polygon(poly, color=color)
self.lidar_render = (self.lidar_render + 1) % 100
i = self.lidar_render
if i < 2 * len(self.lidar):
l = (
self.lidar[i]
if i < len(self.lidar)
else self.lidar[len(self.lidar) - i - 1]
)
self.viewer.draw_polyline([l.p1, l.p2], color=(1, 0, 0), linewidth=1)
for obj in self.drawlist:
for f in obj.fixtures:
trans = f.body.transform
if type(f.shape) is circleShape:
t = rendering.Transform(translation=trans * f.shape.pos)
self.viewer.draw_circle(
f.shape.radius, 30, color=obj.color1
).add_attr(t)
self.viewer.draw_circle(
f.shape.radius, 30, color=obj.color2, filled=False, linewidth=2
).add_attr(t)
else:
path = [trans * v for v in f.shape.vertices]
self.viewer.draw_polygon(path, color=obj.color1)
path.append(path[0])
self.viewer.draw_polyline(path, color=obj.color2, linewidth=2)
flagy1 = TERRAIN_HEIGHT
flagy2 = flagy1 + 50 / SCALE
x = TERRAIN_STEP * 3
self.viewer.draw_polyline(
[(x, flagy1), (x, flagy2)], color=(0, 0, 0), linewidth=2
)
f = [
(x, flagy2),
(x, flagy2 - 10 / SCALE),
(x + 25 / SCALE, flagy2 - 5 / SCALE),
]
self.viewer.draw_polygon(f, color=(0.9, 0.2, 0))
self.viewer.draw_polyline(f + [f[0]], color=(0, 0, 0), linewidth=2)
return self.viewer.render(return_rgb_array=mode == "rgb_array")
def close(self):
if self.viewer is not None:
self.viewer.close()
self.viewer = None
class BipedalWalkerHardcore(BipedalWalker):
hardcore = True
if __name__ == "__main__":
# Heurisic: suboptimal, have no notion of balance.
env = BipedalWalker()
env.reset()
steps = 0
total_reward = 0
a = np.array([0.0, 0.0, 0.0, 0.0])
STAY_ON_ONE_LEG, PUT_OTHER_DOWN, PUSH_OFF = 1, 2, 3
SPEED = 0.29 # Will fall forward on higher speed
state = STAY_ON_ONE_LEG
moving_leg = 0
supporting_leg = 1 - moving_leg
SUPPORT_KNEE_ANGLE = +0.1
supporting_knee_angle = SUPPORT_KNEE_ANGLE
while True:
s, r, done, info = env.step(a)
total_reward += r
if steps % 20 == 0 or done:
print("\naction " + str(["{:+0.2f}".format(x) for x in a]))
print("step {} total_reward {:+0.2f}".format(steps, total_reward))
print("hull " + str(["{:+0.2f}".format(x) for x in s[0:4]]))
print("leg0 " + str(["{:+0.2f}".format(x) for x in s[4:9]]))
print("leg1 " + str(["{:+0.2f}".format(x) for x in s[9:14]]))
steps += 1
contact0 = s[8]
contact1 = s[13]
moving_s_base = 4 + 5 * moving_leg
supporting_s_base = 4 + 5 * supporting_leg
hip_targ = [None, None] # -0.8 .. +1.1
knee_targ = [None, None] # -0.6 .. +0.9
hip_todo = [0.0, 0.0]
knee_todo = [0.0, 0.0]
if state == STAY_ON_ONE_LEG:
hip_targ[moving_leg] = 1.1
knee_targ[moving_leg] = -0.6
supporting_knee_angle += 0.03
if s[2] > SPEED:
supporting_knee_angle += 0.03
supporting_knee_angle = min(supporting_knee_angle, SUPPORT_KNEE_ANGLE)
knee_targ[supporting_leg] = supporting_knee_angle
if s[supporting_s_base + 0] < 0.10: # supporting leg is behind
state = PUT_OTHER_DOWN
if state == PUT_OTHER_DOWN:
hip_targ[moving_leg] = +0.1
knee_targ[moving_leg] = SUPPORT_KNEE_ANGLE
knee_targ[supporting_leg] = supporting_knee_angle
if s[moving_s_base + 4]:
state = PUSH_OFF
supporting_knee_angle = min(s[moving_s_base + 2], SUPPORT_KNEE_ANGLE)
if state == PUSH_OFF:
knee_targ[moving_leg] = supporting_knee_angle
knee_targ[supporting_leg] = +1.0
if s[supporting_s_base + 2] > 0.88 or s[2] > 1.2 * SPEED:
state = STAY_ON_ONE_LEG
moving_leg = 1 - moving_leg
supporting_leg = 1 - moving_leg
if hip_targ[0]:
hip_todo[0] = 0.9 * (hip_targ[0] - s[4]) - 0.25 * s[5]
if hip_targ[1]:
hip_todo[1] = 0.9 * (hip_targ[1] - s[9]) - 0.25 * s[10]
if knee_targ[0]:
knee_todo[0] = 4.0 * (knee_targ[0] - s[6]) - 0.25 * s[7]
if knee_targ[1]:
knee_todo[1] = 4.0 * (knee_targ[1] - s[11]) - 0.25 * s[12]
hip_todo[0] -= 0.9 * (0 - s[0]) - 1.5 * s[1] # PID to keep head strait
hip_todo[1] -= 0.9 * (0 - s[0]) - 1.5 * s[1]
knee_todo[0] -= 15.0 * s[3] # vertical speed, to damp oscillations
knee_todo[1] -= 15.0 * s[3]
a[0] = hip_todo[0]
a[1] = knee_todo[0]
a[2] = hip_todo[1]
a[3] = knee_todo[1]
a = np.clip(0.5 * a, -1.0, 1.0)
env.render()
if done:
break