Files
Gymnasium/gym/scoreboard/api.py
Tom Brown 2d44ed4968 Add Monitored wrapper (#434)
* Add WIP Monitored wrapper

* Remove irrelevant render after close monitor test

* py27 compatibility

* Fix test_benchmark

* Move Monitored out of wrappers __init__

* Turn Monitored into a function that returns a Monitor class

* Fix monitor tests

* Remove deprecated test

* Remove deprecated utility

* Prevent duplicate wrapping, add test

* Fix test

* close env in tests to prevent writing to nonexistent file

* Disable semisuper tests

* typo

* Fix failing spec

* Fix monitoring on semisuper tasks

* Allow disabling of duplicate check

* Rename MonitorManager

* Monitored -> Monitor

* Clean up comments

* Remove cruft
2016-12-23 16:21:42 -08:00

248 lines
12 KiB
Python

import logging
import json
import os
import re
import tarfile
import tempfile
from gym import benchmark_spec, error, monitoring
from gym.scoreboard.client import resource, util
import numpy as np
MAX_VIDEOS = 100
logger = logging.getLogger(__name__)
video_name_re = re.compile('^[\w.-]+\.(mp4|avi|json)$')
metadata_name_re = re.compile('^[\w.-]+\.meta\.json$')
def upload(training_dir, algorithm_id=None, writeup=None, benchmark_id=None, api_key=None, ignore_open_monitors=False):
"""Upload the results of training (as automatically recorded by your
env's monitor) to OpenAI Gym.
Args:
training_dir (Optional[str]): A directory containing the results of a training run.
algorithm_id (Optional[str]): An algorithm id indicating the particular version of the algorithm (including choices of parameters) you are running (visit https://gym.openai.com/algorithms to create an id). If the id doesn't match an existing server id it will create a new algorithm using algorithm_id as the name
benchmark_id (Optional[str]): The benchmark that these evaluations belong to. Will recursively search through training_dir for any Gym manifests. This feature is currently pre-release.
writeup (Optional[str]): A Gist URL (of the form https://gist.github.com/<user>/<id>) containing your writeup for this evaluation.
api_key (Optional[str]): Your OpenAI API key. Can also be provided as an environment variable (OPENAI_GYM_API_KEY).
"""
if benchmark_id:
# We're uploading a benchmark run.
directories = []
env_ids = []
for name, _, files in os.walk(training_dir):
manifests = monitoring.detect_training_manifests(name, files=files)
if manifests:
env_info = monitoring.load_env_info_from_manifests(manifests, training_dir)
env_ids.append(env_info['env_id'])
directories.append(name)
# Validate against benchmark spec
try:
spec = benchmark_spec(benchmark_id)
except error.UnregisteredBenchmark as e:
raise error.Error("Invalid benchmark id: {}. Are you using a benchmark registered in gym/benchmarks/__init__.py?".format(benchmark_id))
# TODO: verify that the number of trials matches
spec_env_ids = [task.env_id for task in spec.tasks for _ in range(task.trials)]
if not env_ids:
raise error.Error("Could not find any evaluations in {}".format(training_dir))
# This could be more stringent about mixing evaluations
if sorted(env_ids) != sorted(spec_env_ids):
logger.info("WARNING: Evaluations do not match spec for benchmark {}. In {}, we found evaluations for {}, expected {}".format(benchmark_id, training_dir, sorted(env_ids), sorted(spec_env_ids)))
benchmark_run = resource.BenchmarkRun.create(benchmark_id=benchmark_id, algorithm_id=algorithm_id)
benchmark_run_id = benchmark_run.id
# Actually do the uploads.
for training_dir in directories:
# N.B. we don't propagate algorithm_id to Evaluation if we're running as part of a benchmark
_upload(training_dir, None, writeup, benchmark_run_id, api_key, ignore_open_monitors)
logger.info("""
****************************************************
You successfully uploaded your benchmark on %s to
OpenAI Gym! You can find it at:
%s
****************************************************
""".rstrip(), benchmark_id, benchmark_run.web_url())
return benchmark_run_id
else:
# Single evalution upload
benchmark_run_id = None
evaluation = _upload(training_dir, algorithm_id, writeup, benchmark_run_id, api_key, ignore_open_monitors)
logger.info("""
****************************************************
You successfully uploaded your evaluation on %s to
OpenAI Gym! You can find it at:
%s
****************************************************
""".rstrip(), evaluation.env, evaluation.web_url())
return None
def _upload(training_dir, algorithm_id=None, writeup=None, benchmark_run_id=None, api_key=None, ignore_open_monitors=False):
if not ignore_open_monitors:
open_monitors = monitoring._open_monitors()
if len(open_monitors) > 0:
envs = [m.env.spec.id if m.env.spec else '(unknown)' for m in open_monitors]
raise error.Error("Still have an open monitor on {}. You must run 'env.close()' before uploading.".format(', '.join(envs)))
env_info, training_episode_batch, training_video = upload_training_data(training_dir, api_key=api_key)
env_id = env_info['env_id']
training_episode_batch_id = training_video_id = None
if training_episode_batch:
training_episode_batch_id = training_episode_batch.id
if training_video:
training_video_id = training_video.id
if logger.level <= logging.INFO:
if training_episode_batch_id is not None and training_video_id is not None:
logger.info('[%s] Creating evaluation object from %s with learning curve and training video', env_id, training_dir)
elif training_episode_batch_id is not None:
logger.info('[%s] Creating evaluation object from %s with learning curve', env_id, training_dir)
elif training_video_id is not None:
logger.info('[%s] Creating evaluation object from %s with training video', env_id, training_dir)
else:
raise error.Error("[%s] You didn't have any recorded training data in {}. Once you've used 'env.monitor.start(training_dir)' to start recording, you need to actually run some rollouts. Please join the community chat on https://gym.openai.com if you have any issues.".format(env_id, training_dir))
evaluation = resource.Evaluation.create(
training_episode_batch=training_episode_batch_id,
training_video=training_video_id,
env=env_info['env_id'],
algorithm={
'id': algorithm_id,
},
benchmark_run_id=benchmark_run_id,
writeup=writeup,
gym_version=env_info['gym_version'],
api_key=api_key,
)
return evaluation
def upload_training_data(training_dir, api_key=None):
# Could have multiple manifests
results = monitoring.load_results(training_dir)
if not results:
raise error.Error('''Could not find any manifest files in {}.
(HINT: this usually means you did not yet close() your env.monitor and have not yet exited the process. You should call 'env.monitor.start(training_dir)' at the start of training and 'env.monitor.close()' at the end, or exit the process.)'''.format(training_dir))
manifests = results['manifests']
env_info = results['env_info']
data_sources = results['data_sources']
timestamps = results['timestamps']
episode_lengths = results['episode_lengths']
episode_rewards = results['episode_rewards']
episode_types = results['episode_types']
initial_reset_timestamps = results['initial_reset_timestamps']
videos = results['videos']
env_id = env_info['env_id']
logger.debug('[%s] Uploading data from manifest %s', env_id, ', '.join(manifests))
# Do the relevant uploads
if len(episode_lengths) > 0:
training_episode_batch = upload_training_episode_batch(data_sources, episode_lengths, episode_rewards, episode_types, initial_reset_timestamps, timestamps, api_key, env_id=env_id)
else:
training_episode_batch = None
if len(videos) > MAX_VIDEOS:
logger.warn('[%s] You recorded videos for %s episodes, but the scoreboard only supports up to %s. We will automatically subsample for you, but you also might wish to adjust your video recording rate.', env_id, len(videos), MAX_VIDEOS)
subsample_inds = np.linspace(0, len(videos)-1, MAX_VIDEOS).astype('int')
videos = [videos[i] for i in subsample_inds]
if len(videos) > 0:
training_video = upload_training_video(videos, api_key, env_id=env_id)
else:
training_video = None
return env_info, training_episode_batch, training_video
def upload_training_episode_batch(data_sources, episode_lengths, episode_rewards, episode_types, initial_reset_timestamps, timestamps, api_key=None, env_id=None):
logger.info('[%s] Uploading %d episodes of training data', env_id, len(episode_lengths))
file_upload = resource.FileUpload.create(purpose='episode_batch', api_key=api_key)
file_upload.put({
'data_sources': data_sources,
'episode_lengths': episode_lengths,
'episode_rewards': episode_rewards,
'episode_types': episode_types,
'initial_reset_timestamps': initial_reset_timestamps,
'timestamps': timestamps,
})
return file_upload
def upload_training_video(videos, api_key=None, env_id=None):
"""videos: should be list of (video_path, metadata_path) tuples"""
with tempfile.TemporaryFile() as archive_file:
write_archive(videos, archive_file, env_id=env_id)
archive_file.seek(0)
logger.info('[%s] Uploading videos of %d training episodes (%d bytes)', env_id, len(videos), util.file_size(archive_file))
file_upload = resource.FileUpload.create(purpose='video', content_type='application/vnd.openai.video+x-compressed', api_key=api_key)
file_upload.put(archive_file, encode=None)
return file_upload
def write_archive(videos, archive_file, env_id=None):
if len(videos) > MAX_VIDEOS:
raise error.Error('[{}] Trying to upload {} videos, but there is a limit of {} currently. If you actually want to upload this many videos, please email gym@openai.com with your use-case.'.format(env_id, MAX_VIDEOS, len(videos)))
logger.debug('[%s] Preparing an archive of %d videos: %s', env_id, len(videos), videos)
# Double check that there are no collisions
basenames = set()
manifest = {
'version': 0,
'videos': []
}
with tarfile.open(fileobj=archive_file, mode='w:gz') as tar:
for video_path, metadata_path in videos:
video_name = os.path.basename(video_path)
metadata_name = os.path.basename(metadata_path)
if not os.path.exists(video_path):
raise error.Error('[{}] No such video file {}. (HINT: Your video recorder may have broken midway through the run. You can check this with `video_recorder.functional`.)'.format(env_id, video_path))
elif not os.path.exists(metadata_path):
raise error.Error('[{}] No such metadata file {}. (HINT: this should be automatically created when using a VideoRecorder instance.)'.format(env_id, video_path))
# Do some sanity checking
if video_name in basenames:
raise error.Error('[{}] Duplicated video name {} in video list: {}'.format(env_id, video_name, videos))
elif metadata_name in basenames:
raise error.Error('[{}] Duplicated metadata file name {} in video list: {}'.format(env_id, metadata_name, videos))
elif not video_name_re.search(video_name):
raise error.Error('[{}] Invalid video name {} (must match {})'.format(env_id, video_name, video_name_re.pattern))
elif not metadata_name_re.search(metadata_name):
raise error.Error('[{}] Invalid metadata file name {} (must match {})'.format(env_id, metadata_name, metadata_name_re.pattern))
# Record that we've seen these names; add to manifest
basenames.add(video_name)
basenames.add(metadata_name)
manifest['videos'].append((video_name, metadata_name))
# Import the files into the archive
tar.add(video_path, arcname=video_name, recursive=False)
tar.add(metadata_path, arcname=metadata_name, recursive=False)
f = tempfile.NamedTemporaryFile(mode='w+', delete=False)
try:
json.dump(manifest, f)
f.close()
tar.add(f.name, arcname='manifest.json')
finally:
f.close()
os.remove(f.name)