mirror of
https://github.com/Farama-Foundation/Gymnasium.git
synced 2025-08-20 14:02:03 +00:00
35 lines
1.3 KiB
Python
35 lines
1.3 KiB
Python
import numpy as np
|
|
import warnings
|
|
from gym.spaces import Box
|
|
from gym import ObservationWrapper
|
|
|
|
|
|
class TimeAwareObservation(ObservationWrapper):
|
|
r"""Augment the observation with current time step in the trajectory.
|
|
|
|
.. note::
|
|
Currently it only works with one-dimensional observation space. It doesn't
|
|
support pixel observation space yet.
|
|
|
|
"""
|
|
|
|
def __init__(self, env):
|
|
super(TimeAwareObservation, self).__init__(env)
|
|
assert isinstance(env.observation_space, Box)
|
|
assert env.observation_space.dtype == np.float32
|
|
warnings.warn("Gym\'s internal preprocessing wrappers are now deprecated. While they will continue to work for the foreseeable future, we strongly recommend using SuperSuit instead: https://github.com/PettingZoo-Team/SuperSuit")
|
|
low = np.append(self.observation_space.low, 0.0)
|
|
high = np.append(self.observation_space.high, np.inf)
|
|
self.observation_space = Box(low, high, dtype=np.float32)
|
|
|
|
def observation(self, observation):
|
|
return np.append(observation, self.t)
|
|
|
|
def step(self, action):
|
|
self.t += 1
|
|
return super(TimeAwareObservation, self).step(action)
|
|
|
|
def reset(self, **kwargs):
|
|
self.t = 0
|
|
return super(TimeAwareObservation, self).reset(**kwargs)
|