Files
Gymnasium/gym/wrappers/normalize.py
John Balis 3a8daafce1 Removing return_info argument to env.reset() and deprecated env.seed() function (reset now always returns info) (#2962)
* removed return_info, made info dict mandatory in reset

* tenatively removed deprecated seed api for environments

* added more info type checks to wrapper tests

* formatting/style compliance

* addressed some comments

* polish to address review

* fixed tests after merge, and added a test of the return_info deprecation assertion if found in reset signature

* some organization of env_checker tests, reverted a probably merge error

* added deprecation check for seed function in env

* updated docstring

* removed debug prints, tweaked test_check_seed_deprecation

* changed return_info deprecation check from assertion to warning

* fixes to vector envs, now  should be correctly structured

* added some explanation and typehints for mockup depcreated return info reset function

* re-removed seed function from vector envs

* added explanation to _reset_return_info_type and changed the return statement
2022-08-23 11:09:54 -04:00

164 lines
6.4 KiB
Python

"""Set of wrappers for normalizing actions and observations."""
import numpy as np
import gym
from gym.utils.step_api_compatibility import step_api_compatibility
# taken from https://github.com/openai/baselines/blob/master/baselines/common/vec_env/vec_normalize.py
class RunningMeanStd:
"""Tracks the mean, variance and count of values."""
# https://en.wikipedia.org/wiki/Algorithms_for_calculating_variance#Parallel_algorithm
def __init__(self, epsilon=1e-4, shape=()):
"""Tracks the mean, variance and count of values."""
self.mean = np.zeros(shape, "float64")
self.var = np.ones(shape, "float64")
self.count = epsilon
def update(self, x):
"""Updates the mean, var and count from a batch of samples."""
batch_mean = np.mean(x, axis=0)
batch_var = np.var(x, axis=0)
batch_count = x.shape[0]
self.update_from_moments(batch_mean, batch_var, batch_count)
def update_from_moments(self, batch_mean, batch_var, batch_count):
"""Updates from batch mean, variance and count moments."""
self.mean, self.var, self.count = update_mean_var_count_from_moments(
self.mean, self.var, self.count, batch_mean, batch_var, batch_count
)
def update_mean_var_count_from_moments(
mean, var, count, batch_mean, batch_var, batch_count
):
"""Updates the mean, var and count using the previous mean, var, count and batch values."""
delta = batch_mean - mean
tot_count = count + batch_count
new_mean = mean + delta * batch_count / tot_count
m_a = var * count
m_b = batch_var * batch_count
M2 = m_a + m_b + np.square(delta) * count * batch_count / tot_count
new_var = M2 / tot_count
new_count = tot_count
return new_mean, new_var, new_count
class NormalizeObservation(gym.core.Wrapper):
"""This wrapper will normalize observations s.t. each coordinate is centered with unit variance.
Note:
The normalization depends on past trajectories and observations will not be normalized correctly if the wrapper was
newly instantiated or the policy was changed recently.
"""
def __init__(self, env: gym.Env, epsilon: float = 1e-8, new_step_api: bool = False):
"""This wrapper will normalize observations s.t. each coordinate is centered with unit variance.
Args:
env (Env): The environment to apply the wrapper
epsilon: A stability parameter that is used when scaling the observations.
new_step_api (bool): Whether the wrapper's step method outputs two booleans (new API) or one boolean (old API)
"""
super().__init__(env, new_step_api)
self.num_envs = getattr(env, "num_envs", 1)
self.is_vector_env = getattr(env, "is_vector_env", False)
if self.is_vector_env:
self.obs_rms = RunningMeanStd(shape=self.single_observation_space.shape)
else:
self.obs_rms = RunningMeanStd(shape=self.observation_space.shape)
self.epsilon = epsilon
def step(self, action):
"""Steps through the environment and normalizes the observation."""
obs, rews, terminateds, truncateds, infos = step_api_compatibility(
self.env.step(action), True, self.is_vector_env
)
if self.is_vector_env:
obs = self.normalize(obs)
else:
obs = self.normalize(np.array([obs]))[0]
return step_api_compatibility(
(obs, rews, terminateds, truncateds, infos),
self.new_step_api,
self.is_vector_env,
)
def reset(self, **kwargs):
"""Resets the environment and normalizes the observation."""
obs, info = self.env.reset(**kwargs)
if self.is_vector_env:
return self.normalize(obs), info
else:
return self.normalize(np.array([obs]))[0], info
def normalize(self, obs):
"""Normalises the observation using the running mean and variance of the observations."""
self.obs_rms.update(obs)
return (obs - self.obs_rms.mean) / np.sqrt(self.obs_rms.var + self.epsilon)
class NormalizeReward(gym.core.Wrapper):
r"""This wrapper will normalize immediate rewards s.t. their exponential moving average has a fixed variance.
The exponential moving average will have variance :math:`(1 - \gamma)^2`.
Note:
The scaling depends on past trajectories and rewards will not be scaled correctly if the wrapper was newly
instantiated or the policy was changed recently.
"""
def __init__(
self,
env: gym.Env,
gamma: float = 0.99,
epsilon: float = 1e-8,
new_step_api: bool = False,
):
"""This wrapper will normalize immediate rewards s.t. their exponential moving average has a fixed variance.
Args:
env (env): The environment to apply the wrapper
epsilon (float): A stability parameter
gamma (float): The discount factor that is used in the exponential moving average.
new_step_api (bool): Whether the wrapper's step method outputs two booleans (new API) or one boolean (old API)
"""
super().__init__(env, new_step_api)
self.num_envs = getattr(env, "num_envs", 1)
self.is_vector_env = getattr(env, "is_vector_env", False)
self.return_rms = RunningMeanStd(shape=())
self.returns = np.zeros(self.num_envs)
self.gamma = gamma
self.epsilon = epsilon
def step(self, action):
"""Steps through the environment, normalizing the rewards returned."""
obs, rews, terminateds, truncateds, infos = step_api_compatibility(
self.env.step(action), True, self.is_vector_env
)
if not self.is_vector_env:
rews = np.array([rews])
self.returns = self.returns * self.gamma + rews
rews = self.normalize(rews)
if not self.is_vector_env:
dones = terminateds or truncateds
else:
dones = np.bitwise_or(terminateds, truncateds)
self.returns[dones] = 0.0
if not self.is_vector_env:
rews = rews[0]
return step_api_compatibility(
(obs, rews, terminateds, truncateds, infos),
self.new_step_api,
self.is_vector_env,
)
def normalize(self, rews):
"""Normalizes the rewards with the running mean rewards and their variance."""
self.return_rms.update(self.returns)
return rews / np.sqrt(self.return_rms.var + self.epsilon)