Files
Gymnasium/gym/envs/atari/atari_env.py
Trevor Blackwell 3bc4692d12 Optimize Atari envs
Get screen pixels in a way that doesn’t require swapping the RGB
channels.
SeaquestNoFrameskip used to take 3.5 seconds to do 10k steps, now it
takes 2.6 seconds.
When also using opencv to resize to (84,84,3), it used to take 7.8
seconds and now takes 7.0.
2017-03-28 09:47:08 -07:00

183 lines
5.7 KiB
Python

import numpy as np
import os
import gym
from gym import error, spaces
from gym import utils
from gym.utils import seeding
try:
import atari_py
except ImportError as e:
raise error.DependencyNotInstalled("{}. (HINT: you can install Atari dependencies by running 'pip install gym[atari]'.)".format(e))
import logging
logger = logging.getLogger(__name__)
def to_ram(ale):
ram_size = ale.getRAMSize()
ram = np.zeros((ram_size),dtype=np.uint8)
ale.getRAM(ram)
return ram
class AtariEnv(gym.Env, utils.EzPickle):
metadata = {'render.modes': ['human', 'rgb_array']}
def __init__(self, game='pong', obs_type='ram', frameskip=(2, 5), repeat_action_probability=0.):
"""Frameskip should be either a tuple (indicating a random range to
choose from, with the top value exclude), or an int."""
utils.EzPickle.__init__(self, game, obs_type)
assert obs_type in ('ram', 'image')
self.game_path = atari_py.get_game_path(game)
if not os.path.exists(self.game_path):
raise IOError('You asked for game %s but path %s does not exist'%(game, self.game_path))
self._obs_type = obs_type
self.frameskip = frameskip
self.ale = atari_py.ALEInterface()
self.viewer = None
# Tune (or disable) ALE's action repeat:
# https://github.com/openai/gym/issues/349
assert isinstance(repeat_action_probability, (float, int)), "Invalid repeat_action_probability: {!r}".format(repeat_action_probability)
self.ale.setFloat('repeat_action_probability'.encode('utf-8'), repeat_action_probability)
self._seed()
(screen_width, screen_height) = self.ale.getScreenDims()
self._buffer = np.empty((screen_height, screen_width, 3), dtype=np.uint8)
self._action_set = self.ale.getMinimalActionSet()
self.action_space = spaces.Discrete(len(self._action_set))
(screen_width,screen_height) = self.ale.getScreenDims()
if self._obs_type == 'ram':
self.observation_space = spaces.Box(low=np.zeros(128), high=np.zeros(128)+255)
elif self._obs_type == 'image':
self.observation_space = spaces.Box(low=0, high=255, shape=(screen_height, screen_width, 3))
else:
raise error.Error('Unrecognized observation type: {}'.format(self._obs_type))
def _seed(self, seed=None):
self.np_random, seed1 = seeding.np_random(seed)
# Derive a random seed. This gets passed as a uint, but gets
# checked as an int elsewhere, so we need to keep it below
# 2**31.
seed2 = seeding.hash_seed(seed1 + 1) % 2**31
# Empirically, we need to seed before loading the ROM.
self.ale.setInt(b'random_seed', seed2)
self.ale.loadROM(self.game_path)
return [seed1, seed2]
def _step(self, a):
reward = 0.0
action = self._action_set[a]
if isinstance(self.frameskip, int):
num_steps = self.frameskip
else:
num_steps = self.np_random.randint(self.frameskip[0], self.frameskip[1])
for _ in range(num_steps):
reward += self.ale.act(action)
ob = self._get_obs()
return ob, reward, self.ale.game_over(), {"ale.lives": self.ale.lives()}
def _get_image(self):
self.ale.getScreenRGB2(self._buffer) # New in atari-py 2017-3-28
return self._buffer
def _get_ram(self):
return to_ram(self.ale)
@property
def _n_actions(self):
return len(self._action_set)
def _get_obs(self):
if self._obs_type == 'ram':
return self._get_ram()
elif self._obs_type == 'image':
img = self._get_image()
return img
# return: (states, observations)
def _reset(self):
self.ale.reset_game()
return self._get_obs()
def _render(self, mode='human', close=False):
if close:
if self.viewer is not None:
self.viewer.close()
self.viewer = None
return
img = self._get_image()
if mode == 'rgb_array':
return img
elif mode == 'human':
from gym.envs.classic_control import rendering
if self.viewer is None:
self.viewer = rendering.SimpleImageViewer()
self.viewer.imshow(img)
def get_action_meanings(self):
return [ACTION_MEANING[i] for i in self._action_set]
def get_keys_to_action(self):
KEYWORD_TO_KEY = {
'UP': ord('w'),
'DOWN': ord('s'),
'LEFT': ord('a'),
'RIGHT': ord('d'),
'FIRE': ord(' '),
}
keys_to_action = {}
for action_id, action_meaning in enumerate(self.get_action_meanings()):
keys = []
for keyword, key in KEYWORD_TO_KEY.items():
if keyword in action_meaning:
keys.append(key)
keys = tuple(sorted(keys))
assert keys not in keys_to_action
keys_to_action[keys] = action_id
return keys_to_action
# def save_state(self):
# return self.ale.saveState()
# def load_state(self):
# return self.ale.loadState()
# def clone_state(self):
# return self.ale.cloneState()
# def restore_state(self, state):
# return self.ale.restoreState(state)
ACTION_MEANING = {
0 : "NOOP",
1 : "FIRE",
2 : "UP",
3 : "RIGHT",
4 : "LEFT",
5 : "DOWN",
6 : "UPRIGHT",
7 : "UPLEFT",
8 : "DOWNRIGHT",
9 : "DOWNLEFT",
10 : "UPFIRE",
11 : "RIGHTFIRE",
12 : "LEFTFIRE",
13 : "DOWNFIRE",
14 : "UPRIGHTFIRE",
15 : "UPLEFTFIRE",
16 : "DOWNRIGHTFIRE",
17 : "DOWNLEFTFIRE",
}