Files
Gymnasium/gym/spaces/utils.py
Zach Dwiel 3ee7e678bf Respect the order of keys in a Dict's observation space when flattening (#1748)
* Respect the order of keys in a Dict's observation space when flattening

Prior to this change, the order of the key/values in the observation was used instead of the order in the Dict's observation space. unflatten already uses the order specified by the Dict's observation space.

* add tests for FlattenObservation
2019-12-06 15:49:56 +01:00

70 lines
2.5 KiB
Python

import numpy as np
from gym.spaces import Box
from gym.spaces import Discrete
from gym.spaces import MultiDiscrete
from gym.spaces import MultiBinary
from gym.spaces import Tuple
from gym.spaces import Dict
def flatdim(space):
if isinstance(space, Box):
return int(np.prod(space.shape))
elif isinstance(space, Discrete):
return int(space.n)
elif isinstance(space, Tuple):
return int(sum([flatdim(s) for s in space.spaces]))
elif isinstance(space, Dict):
return int(sum([flatdim(s) for s in space.spaces.values()]))
elif isinstance(space, MultiBinary):
return int(space.n)
elif isinstance(space, MultiDiscrete):
return int(np.prod(space.shape))
else:
raise NotImplementedError
def flatten(space, x):
if isinstance(space, Box):
return np.asarray(x, dtype=np.float32).flatten()
elif isinstance(space, Discrete):
onehot = np.zeros(space.n, dtype=np.float32)
onehot[x] = 1.0
return onehot
elif isinstance(space, Tuple):
return np.concatenate([flatten(s, x_part) for x_part, s in zip(x, space.spaces)])
elif isinstance(space, Dict):
return np.concatenate([flatten(s, x[key]) for key, s in space.spaces.items()])
elif isinstance(space, MultiBinary):
return np.asarray(x).flatten()
elif isinstance(space, MultiDiscrete):
return np.asarray(x).flatten()
else:
raise NotImplementedError
def unflatten(space, x):
if isinstance(space, Box):
return np.asarray(x, dtype=np.float32).reshape(space.shape)
elif isinstance(space, Discrete):
return int(np.nonzero(x)[0][0])
elif isinstance(space, Tuple):
dims = [flatdim(s) for s in space.spaces]
list_flattened = np.split(x, np.cumsum(dims)[:-1])
list_unflattened = [unflatten(s, flattened)
for flattened, s in zip(list_flattened, space.spaces)]
return tuple(list_unflattened)
elif isinstance(space, Dict):
dims = [flatdim(s) for s in space.spaces.values()]
list_flattened = np.split(x, np.cumsum(dims)[:-1])
list_unflattened = [(key, unflatten(s, flattened))
for flattened, (key, s) in zip(list_flattened, space.spaces.items())]
return dict(list_unflattened)
elif isinstance(space, MultiBinary):
return np.asarray(x).reshape(space.shape)
elif isinstance(space, MultiDiscrete):
return np.asarray(x).reshape(space.shape)
else:
raise NotImplementedError