Files
Gymnasium/tests/vector/test_async_vector_env.py
John Balis 15049e22d7 Adding return_info argument to reset to allow for optional info dict as a second return value (#2546)
* initial draft of optional info dict in reset function, implemented for cartpole, tests seem to be passing

* merged core.py

* updated return type annotation for reset function in core.py

* optional metadata with return_info from reset added for all first party environments, with corresponding tests. Incomplete implementation for wrappers and vector wrappers

* removed Optional type for return_info arguments

* added tests for return_info to normalize wrapper and sync_vector_env

* autoformatted using black

* added optional reset metadata tests to several wrappers

* added return_info capability to async_vector_env.py and test to verify functionality

* added optional return_info test for record_video.py

* removed tests for mujoco environments

* autoformatted

* improved test coverage for optional reset return_info

* re-removed unit test envs accidentally reintroduced in merge

* removed unnecessary import

* changes based on code-review

* small fix to core wrapper typing and autoformatted record_epsisode_stats

* small change to pass flake8 style
2022-02-06 18:28:27 -05:00

299 lines
10 KiB
Python

import pytest
import numpy as np
from multiprocessing import TimeoutError
from gym.spaces import Box, Tuple, Discrete, MultiDiscrete
from gym.error import AlreadyPendingCallError, NoAsyncCallError, ClosedEnvironmentError
from tests.vector.utils import (
CustomSpace,
make_env,
make_slow_env,
make_custom_space_env,
)
from gym.vector.async_vector_env import AsyncVectorEnv
@pytest.mark.parametrize("shared_memory", [True, False])
def test_create_async_vector_env(shared_memory):
env_fns = [make_env("CartPole-v1", i) for i in range(8)]
try:
env = AsyncVectorEnv(env_fns, shared_memory=shared_memory)
finally:
env.close()
assert env.num_envs == 8
@pytest.mark.parametrize("shared_memory", [True, False])
def test_reset_async_vector_env(shared_memory):
env_fns = [make_env("CartPole-v1", i) for i in range(8)]
try:
env = AsyncVectorEnv(env_fns, shared_memory=shared_memory)
observations = env.reset()
finally:
env.close()
assert isinstance(env.observation_space, Box)
assert isinstance(observations, np.ndarray)
assert observations.dtype == env.observation_space.dtype
assert observations.shape == (8,) + env.single_observation_space.shape
assert observations.shape == env.observation_space.shape
try:
env = AsyncVectorEnv(env_fns, shared_memory=shared_memory)
observations = env.reset(return_info=False)
finally:
env.close()
assert isinstance(env.observation_space, Box)
assert isinstance(observations, np.ndarray)
assert observations.dtype == env.observation_space.dtype
assert observations.shape == (8,) + env.single_observation_space.shape
assert observations.shape == env.observation_space.shape
try:
env = AsyncVectorEnv(env_fns, shared_memory=shared_memory)
observations, infos = env.reset(return_info=True)
finally:
env.close()
assert isinstance(env.observation_space, Box)
assert isinstance(observations, np.ndarray)
assert observations.dtype == env.observation_space.dtype
assert observations.shape == (8,) + env.single_observation_space.shape
assert observations.shape == env.observation_space.shape
assert isinstance(infos, list)
assert all([isinstance(info, dict) for info in infos])
@pytest.mark.parametrize("shared_memory", [True, False])
@pytest.mark.parametrize("use_single_action_space", [True, False])
def test_step_async_vector_env(shared_memory, use_single_action_space):
env_fns = [make_env("CartPole-v1", i) for i in range(8)]
try:
env = AsyncVectorEnv(env_fns, shared_memory=shared_memory)
observations = env.reset()
assert isinstance(env.single_action_space, Discrete)
assert isinstance(env.action_space, MultiDiscrete)
if use_single_action_space:
actions = [env.single_action_space.sample() for _ in range(8)]
else:
actions = env.action_space.sample()
observations, rewards, dones, _ = env.step(actions)
finally:
env.close()
assert isinstance(env.observation_space, Box)
assert isinstance(observations, np.ndarray)
assert observations.dtype == env.observation_space.dtype
assert observations.shape == (8,) + env.single_observation_space.shape
assert observations.shape == env.observation_space.shape
assert isinstance(rewards, np.ndarray)
assert isinstance(rewards[0], (float, np.floating))
assert rewards.ndim == 1
assert rewards.size == 8
assert isinstance(dones, np.ndarray)
assert dones.dtype == np.bool_
assert dones.ndim == 1
assert dones.size == 8
@pytest.mark.parametrize("shared_memory", [True, False])
def test_call_async_vector_env(shared_memory):
env_fns = [make_env("CartPole-v1", i) for i in range(4)]
try:
env = AsyncVectorEnv(env_fns, shared_memory=shared_memory)
_ = env.reset()
images = env.call("render", mode="rgb_array")
gravity = env.call("gravity")
finally:
env.close()
assert isinstance(images, tuple)
assert len(images) == 4
for i in range(4):
assert isinstance(images[i], np.ndarray)
assert isinstance(gravity, tuple)
assert len(gravity) == 4
for i in range(4):
assert isinstance(gravity[i], float)
assert gravity[i] == 9.8
@pytest.mark.parametrize("shared_memory", [True, False])
def test_set_attr_async_vector_env(shared_memory):
env_fns = [make_env("CartPole-v1", i) for i in range(4)]
try:
env = AsyncVectorEnv(env_fns, shared_memory=shared_memory)
env.set_attr("gravity", [9.81, 3.72, 8.87, 1.62])
gravity = env.get_attr("gravity")
assert gravity == (9.81, 3.72, 8.87, 1.62)
finally:
env.close()
@pytest.mark.parametrize("shared_memory", [True, False])
def test_copy_async_vector_env(shared_memory):
env_fns = [make_env("CartPole-v1", i) for i in range(8)]
try:
env = AsyncVectorEnv(env_fns, shared_memory=shared_memory, copy=True)
observations = env.reset()
observations[0] = 0
finally:
env.close()
@pytest.mark.parametrize("shared_memory", [True, False])
def test_no_copy_async_vector_env(shared_memory):
env_fns = [make_env("CartPole-v1", i) for i in range(8)]
try:
env = AsyncVectorEnv(env_fns, shared_memory=shared_memory, copy=False)
observations = env.reset()
observations[0] = 0
finally:
env.close()
@pytest.mark.parametrize("shared_memory", [True, False])
def test_reset_timeout_async_vector_env(shared_memory):
env_fns = [make_slow_env(0.3, i) for i in range(4)]
with pytest.raises(TimeoutError):
try:
env = AsyncVectorEnv(env_fns, shared_memory=shared_memory)
env.reset_async()
observations = env.reset_wait(timeout=0.1)
finally:
env.close(terminate=True)
@pytest.mark.parametrize("shared_memory", [True, False])
def test_step_timeout_async_vector_env(shared_memory):
env_fns = [make_slow_env(0.0, i) for i in range(4)]
with pytest.raises(TimeoutError):
try:
env = AsyncVectorEnv(env_fns, shared_memory=shared_memory)
observations = env.reset()
env.step_async([0.1, 0.1, 0.3, 0.1])
observations, rewards, dones, _ = env.step_wait(timeout=0.1)
finally:
env.close(terminate=True)
@pytest.mark.filterwarnings("ignore::UserWarning")
@pytest.mark.parametrize("shared_memory", [True, False])
def test_reset_out_of_order_async_vector_env(shared_memory):
env_fns = [make_env("CartPole-v1", i) for i in range(4)]
with pytest.raises(NoAsyncCallError):
try:
env = AsyncVectorEnv(env_fns, shared_memory=shared_memory)
observations = env.reset_wait()
except NoAsyncCallError as exception:
assert exception.name == "reset"
raise
finally:
env.close(terminate=True)
with pytest.raises(AlreadyPendingCallError):
try:
env = AsyncVectorEnv(env_fns, shared_memory=shared_memory)
actions = env.action_space.sample()
observations = env.reset()
env.step_async(actions)
env.reset_async()
except NoAsyncCallError as exception:
assert exception.name == "step"
raise
finally:
env.close(terminate=True)
@pytest.mark.filterwarnings("ignore::UserWarning")
@pytest.mark.parametrize("shared_memory", [True, False])
def test_step_out_of_order_async_vector_env(shared_memory):
env_fns = [make_env("CartPole-v1", i) for i in range(4)]
with pytest.raises(NoAsyncCallError):
try:
env = AsyncVectorEnv(env_fns, shared_memory=shared_memory)
actions = env.action_space.sample()
observations = env.reset()
observations, rewards, dones, infos = env.step_wait()
except AlreadyPendingCallError as exception:
assert exception.name == "step"
raise
finally:
env.close(terminate=True)
with pytest.raises(AlreadyPendingCallError):
try:
env = AsyncVectorEnv(env_fns, shared_memory=shared_memory)
actions = env.action_space.sample()
env.reset_async()
env.step_async(actions)
except AlreadyPendingCallError as exception:
assert exception.name == "reset"
raise
finally:
env.close(terminate=True)
@pytest.mark.parametrize("shared_memory", [True, False])
def test_already_closed_async_vector_env(shared_memory):
env_fns = [make_env("CartPole-v1", i) for i in range(4)]
with pytest.raises(ClosedEnvironmentError):
env = AsyncVectorEnv(env_fns, shared_memory=shared_memory)
env.close()
observations = env.reset()
@pytest.mark.parametrize("shared_memory", [True, False])
def test_check_spaces_async_vector_env(shared_memory):
# CartPole-v1 - observation_space: Box(4,), action_space: Discrete(2)
env_fns = [make_env("CartPole-v1", i) for i in range(8)]
# FrozenLake-v1 - Discrete(16), action_space: Discrete(4)
env_fns[1] = make_env("FrozenLake-v1", 1)
with pytest.raises(RuntimeError):
env = AsyncVectorEnv(env_fns, shared_memory=shared_memory)
env.close(terminate=True)
def test_custom_space_async_vector_env():
env_fns = [make_custom_space_env(i) for i in range(4)]
try:
env = AsyncVectorEnv(env_fns, shared_memory=False)
reset_observations = env.reset()
assert isinstance(env.single_action_space, CustomSpace)
assert isinstance(env.action_space, Tuple)
actions = ("action-2", "action-3", "action-5", "action-7")
step_observations, rewards, dones, _ = env.step(actions)
finally:
env.close()
assert isinstance(env.single_observation_space, CustomSpace)
assert isinstance(env.observation_space, Tuple)
assert isinstance(reset_observations, tuple)
assert reset_observations == ("reset", "reset", "reset", "reset")
assert isinstance(step_observations, tuple)
assert step_observations == (
"step(action-2)",
"step(action-3)",
"step(action-5)",
"step(action-7)",
)
def test_custom_space_async_vector_env_shared_memory():
env_fns = [make_custom_space_env(i) for i in range(4)]
with pytest.raises(ValueError):
env = AsyncVectorEnv(env_fns, shared_memory=True)
env.close(terminate=True)