Files
Gymnasium/tests/envs/functional/test_core.py
2025-06-07 17:57:58 +01:00

59 lines
1.8 KiB
Python

from typing import Any
import numpy as np
from gymnasium.experimental.functional import FuncEnv
class BasicTestEnv(FuncEnv):
def __init__(self, options: dict[str, Any] | None = None):
super().__init__(options)
def initial(self, rng: Any) -> np.ndarray:
return np.array([0, 0], dtype=np.float32)
def observation(self, state: np.ndarray, rng: Any) -> np.ndarray:
return state
def transition(self, state: np.ndarray, action: int, rng: None) -> np.ndarray:
return state + np.array([0, action], dtype=np.float32)
def reward(
self, state: np.ndarray, action: int, next_state: np.ndarray, rng: Any
) -> float:
return 1.0 if next_state[1] > 0 else 0.0
def terminal(self, state: np.ndarray, rng: Any) -> bool:
return state[1] > 0
def test_api():
env = BasicTestEnv()
state = env.initial(None)
obs = env.observation(state, None)
assert state.shape == (2,)
assert state.dtype == np.float32
assert obs.shape == (2,)
assert obs.dtype == np.float32
assert np.allclose(obs, state)
actions = [-1, -2, -5, 3, 5, 2]
for i, action in enumerate(actions):
next_state = env.transition(state, action, None)
assert next_state.shape == (2,)
assert next_state.dtype == np.float32
assert np.allclose(next_state, state + np.array([0, action]))
observation = env.observation(next_state, None)
assert observation.shape == (2,)
assert observation.dtype == np.float32
assert np.allclose(observation, next_state)
reward = env.reward(state, action, next_state, None)
assert reward == (1.0 if next_state[1] > 0 else 0.0)
terminal = env.terminal(next_state, None)
assert terminal == (i == 5) # terminal state is in the final action
state = next_state