Files
Gymnasium/tests/spaces/test_utils.py
2025-06-07 17:57:58 +01:00

210 lines
5.9 KiB
Python

from itertools import zip_longest
import numpy as np
import pytest
import gymnasium as gym
from gymnasium.spaces import Box, Graph, Sequence, utils
from gymnasium.spaces.utils import is_space_dtype_shape_equiv
from gymnasium.utils.env_checker import data_equivalence
from gymnasium.vector.utils import (
batch_space,
create_shared_memory,
iterate,
read_from_shared_memory,
write_to_shared_memory,
)
from tests.spaces.utils import TESTING_SPACES, TESTING_SPACES_IDS
TESTING_SPACES_EXPECTED_FLATDIMS = [
# Discrete
3,
3,
# Box
1,
4,
2,
2,
2,
12,
3,
4,
# Multi-discrete
4,
10,
4,
10,
# Multi-binary
8,
6,
# Text
6,
6,
6,
# Tuple
9,
7,
10,
6,
None,
# Dict
7,
8,
17,
None,
# Graph
None,
None,
None,
None,
# Sequence
None,
None,
None,
None,
None,
# OneOf
4,
5,
]
assert len(TESTING_SPACES) == len(TESTING_SPACES_EXPECTED_FLATDIMS)
@pytest.mark.parametrize(
["space", "flatdim"],
zip_longest(TESTING_SPACES, TESTING_SPACES_EXPECTED_FLATDIMS),
ids=TESTING_SPACES_IDS,
)
def test_flatdim(space: gym.spaces.Space, flatdim: int | None):
"""Checks that the flattened dims of the space is equal to an expected value."""
if space.is_np_flattenable:
dim = utils.flatdim(space)
assert dim == flatdim, f"Expected {dim} to equal {flatdim}"
else:
with pytest.raises(
ValueError,
):
utils.flatdim(space)
@pytest.mark.parametrize("space", TESTING_SPACES, ids=TESTING_SPACES_IDS)
def test_flatten_space(space):
"""Test that the flattened spaces are a box and have the `flatdim` shape."""
flat_space = utils.flatten_space(space)
if space.is_np_flattenable:
assert isinstance(flat_space, Box)
(single_dim,) = flat_space.shape
flatdim = utils.flatdim(space)
assert single_dim == flatdim
elif isinstance(flat_space, Graph):
assert isinstance(space, Graph)
(node_single_dim,) = flat_space.node_space.shape
node_flatdim = utils.flatdim(space.node_space)
assert node_single_dim == node_flatdim
if flat_space.edge_space is not None:
(edge_single_dim,) = flat_space.edge_space.shape
edge_flatdim = utils.flatdim(space.edge_space)
assert edge_single_dim == edge_flatdim
else:
assert isinstance(
space,
(gym.spaces.Tuple, gym.spaces.Dict, gym.spaces.Sequence),
)
@pytest.mark.parametrize("space", TESTING_SPACES, ids=TESTING_SPACES_IDS)
def test_flatten(space):
"""Test that a flattened sample have the `flatdim` shape."""
sample = space.sample()
flattened_sample = utils.flatten(space, sample)
if space.is_np_flattenable:
assert isinstance(flattened_sample, np.ndarray)
(single_dim,) = flattened_sample.shape
flatdim = utils.flatdim(space)
assert single_dim == flatdim
else:
assert isinstance(space, Sequence) or isinstance(
flattened_sample, (tuple, dict, Graph)
)
@pytest.mark.parametrize("space", TESTING_SPACES, ids=TESTING_SPACES_IDS)
def test_flat_space_contains_flat_points(space):
"""Test that the flattened samples are contained within the flattened space."""
flattened_samples = [utils.flatten(space, space.sample()) for _ in range(10)]
flat_space = utils.flatten_space(space)
for flat_sample in flattened_samples:
assert flat_sample in flat_space
@pytest.mark.parametrize("space", TESTING_SPACES, ids=TESTING_SPACES_IDS)
def test_flatten_roundtripping(space):
"""Tests roundtripping with flattening and unflattening are equal to the original sample."""
samples = [space.sample() for _ in range(10)]
flattened_samples = [utils.flatten(space, sample) for sample in samples]
unflattened_samples = [
utils.unflatten(space, sample) for sample in flattened_samples
]
for original, roundtripped in zip(samples, unflattened_samples):
assert data_equivalence(original, roundtripped)
def test_unflatten_discrete_error():
value = np.array([0])
with pytest.raises(ValueError):
utils.unflatten(gym.spaces.Discrete(1), value)
def test_unflatten_multidiscrete_error():
value = np.array([0, 0])
with pytest.raises(ValueError):
utils.unflatten(gym.spaces.MultiDiscrete([1, 1]), value)
@pytest.mark.parametrize("space", TESTING_SPACES, ids=TESTING_SPACES_IDS)
def test_is_space_dtype_shape_equiv(space):
assert is_space_dtype_shape_equiv(space, space) is True
@pytest.mark.parametrize("space_1", TESTING_SPACES, ids=TESTING_SPACES_IDS)
def test_all_space_pairs_for_is_space_dtype_shape_equiv(space_1):
"""Practically check that the `is_space_dtype_shape_equiv` works as expected for `shared_memory`."""
for space_2 in TESTING_SPACES:
compatible = is_space_dtype_shape_equiv(space_1, space_2)
if compatible:
try:
shared_memory = create_shared_memory(space_1, n=2)
except TypeError as err:
assert (
"has a dynamic shape so its not possible to make a static shared memory."
in str(err)
)
continue
batched_space = batch_space(space_1, n=2)
space_1.seed(123)
space_2.seed(123)
sample_1 = space_1.sample()
sample_2 = space_2.sample()
write_to_shared_memory(space_1, 0, sample_1, shared_memory)
write_to_shared_memory(space_2, 1, sample_2, shared_memory)
read_samples = read_from_shared_memory(space_1, shared_memory, n=2)
read_sample_1, read_sample_2 = iterate(batched_space, read_samples)
assert data_equivalence(sample_1, read_sample_1)
assert data_equivalence(sample_2, read_sample_2)