Files
Gymnasium/tests/vector/testing_utils.py
2025-06-07 17:57:58 +01:00

164 lines
4.6 KiB
Python

"""Testing utilitys for `gymnasium.vector`."""
import time
import numpy as np
import gymnasium as gym
from gymnasium.spaces import Box, Dict, Discrete, MultiBinary, MultiDiscrete, Tuple
BaseGymSpaces = (Box, Discrete, MultiDiscrete, MultiBinary)
spaces = [
Box(low=np.array(-1.0), high=np.array(1.0), dtype=np.float64),
Box(low=np.array([0.0]), high=np.array([10.0]), dtype=np.float64),
Box(
low=np.array([-1.0, 0.0, 0.0]), high=np.array([1.0, 1.0, 1.0]), dtype=np.float64
),
Box(
low=np.array([[-1.0, 0.0], [0.0, -1.0]]), high=np.ones((2, 2)), dtype=np.float64
),
Box(low=0, high=255, shape=(), dtype=np.uint8),
Box(low=0, high=255, shape=(32, 32, 3), dtype=np.uint8),
Discrete(2),
Discrete(5, start=-2),
Tuple((Discrete(3), Discrete(5))),
Tuple(
(
Discrete(7),
Box(low=np.array([0.0, -1.0]), high=np.array([1.0, 1.0]), dtype=np.float64),
)
),
MultiDiscrete([11, 13, 17]),
MultiBinary(19),
Dict(
{
"position": Discrete(23),
"velocity": Box(
low=np.array([0.0]), high=np.array([1.0]), dtype=np.float64
),
}
),
Dict(
{
"position": Dict({"x": Discrete(29), "y": Discrete(31)}),
"velocity": Tuple(
(Discrete(37), Box(low=0, high=255, shape=(), dtype=np.uint8))
),
}
),
]
HEIGHT, WIDTH = 64, 64
class SlowEnv(gym.Env):
"""A custom slow environment."""
def __init__(self, slow_reset=0.3):
"""Initialises the environment with a slow reset parameter used in the `step` and `reset` functions."""
super().__init__()
self.slow_reset = slow_reset
self.observation_space = Box(
low=0, high=255, shape=(HEIGHT, WIDTH, 3), dtype=np.uint8
)
self.action_space = Box(low=0.0, high=1.0, shape=(), dtype=np.float32)
def reset(self, *, seed: int | None = None, options: dict | None = None):
"""Resets the environment with a time sleep."""
super().reset(seed=seed)
if self.slow_reset > 0:
time.sleep(self.slow_reset)
return self.observation_space.sample(), {}
def step(self, action):
"""Steps through the environment with a time sleep."""
time.sleep(action)
observation = self.observation_space.sample()
reward, terminated, truncated = 0.0, False, False
return observation, reward, terminated, truncated, {}
class CustomSpace(gym.Space):
"""Minimal custom observation space."""
def sample(self):
"""Generates a sample from the custom space."""
return self.np_random.integers(0, 10, ())
def contains(self, x):
"""Check if the element `x` is contained within the space."""
return 0 <= x <= 10
def __eq__(self, other):
"""Check if the two spaces are equal."""
return isinstance(other, CustomSpace)
custom_spaces = [
CustomSpace(),
Tuple((CustomSpace(), Box(low=0, high=255, shape=(), dtype=np.uint8))),
]
class CustomSpaceEnv(gym.Env):
"""An environment with custom spaces for observation and action spaces."""
def __init__(self):
"""Initialise the environment."""
super().__init__()
self.observation_space = CustomSpace()
self.action_space = CustomSpace()
def reset(self, *, seed: int | None = None, options: dict | None = None):
"""Resets the environment."""
super().reset(seed=seed)
return "reset", {}
def step(self, action):
"""Steps through the environment."""
observation = f"step({action:s})"
reward, terminated, truncated = 0.0, False, False
return observation, reward, terminated, truncated, {}
def make_env(env_name, seed, **kwargs):
"""Creates an environment."""
def _make():
env = gym.make(env_name, disable_env_checker=True, **kwargs)
env.action_space.seed(seed)
env.reset(seed=seed)
return env
return _make
def make_slow_env(slow_reset, seed):
"""Creates an environment with slow reset."""
def _make():
env = SlowEnv(slow_reset=slow_reset)
env.reset(seed=seed)
return env
return _make
def make_custom_space_env(seed):
"""Creates a custom space environment."""
def _make():
env = CustomSpaceEnv()
env.reset(seed=seed)
return env
return _make
def assert_rng_equal(rng_1: np.random.Generator, rng_2: np.random.Generator):
"""Tests whether two random number generators are equal."""
assert rng_1.bit_generator.state == rng_2.bit_generator.state