Files
Gymnasium/gym/vector/sync_vector_env.py
Gianluca De Cola 49d8299a1e New info API for vectorized environments #2657 (#2773)
* WIP refactor info API sync vector.

* Add missing untracked file.

* Add info strategy to reset_wait.

* Add interface and docstring.

* info with strategy pattern on async vector env.

* Add default to async vecenv.

* episode statistics for asyncvecnev.

* Add tests info strategy format.

* Add info strategy to reset_wait.

* refactor and cleanup.

* Code cleanup. Add tests.

* Add tests for video recording with new info format.

* fix test case.

* fix camelcase.

* rename enum.

* update tests, docstrings, cleanup.

* Changes brax strategy to numpy. add_strategy method in StrategyFactory. Add tests.

* fix docstring and logging format.

* Set Brax info format as default. Remove classic info format. Update tests.

* breaking the wrong loop.

* WIP: wrapper.

* Add wrapper for brax to classic info.

* WIP: wrapper with nested RecordEpisodeStatistic.

* Add tests. Refactor docstrings. Cleanup.

* cleanup.

* patch conflicts.

* rebase and conflicts.

* new pre-commit conventions.

* docstring.

* renaming.

* incorporate info_processor in vecEnv.

* renaming. Create info dict only if needed.

* remove all brax references. update docstring. Update duplicate test.

* reviews.

* pre-commit.

* reviews.

* docstring.

* cleanup blank lines.

* add support for numpy dtypes.

* docstring fix.

* formatting.

* naming.

* assert correct info from wrappers chaining. Test correct wrappers chaining. naming.

* simplify episode_statistics.

* change args orer.

* update tests.

* wip: refactor episode_statistics.

* Add test for add_vecore_episode_statistics.
2022-05-24 10:36:35 -04:00

232 lines
8.4 KiB
Python

"""A synchronous vector environment."""
from __future__ import annotations
from copy import deepcopy
from typing import Any, Iterator, Optional, Sequence, Union
import numpy as np
from gym.spaces import Space
from gym.vector.utils import concatenate, create_empty_array, iterate
from gym.vector.vector_env import VectorEnv
__all__ = ["SyncVectorEnv"]
class SyncVectorEnv(VectorEnv):
"""Vectorized environment that serially runs multiple environments.
Example::
>>> import gym
>>> env = gym.vector.SyncVectorEnv([
... lambda: gym.make("Pendulum-v0", g=9.81),
... lambda: gym.make("Pendulum-v0", g=1.62)
... ])
>>> env.reset()
array([[-0.8286432 , 0.5597771 , 0.90249056],
[-0.85009176, 0.5266346 , 0.60007906]], dtype=float32)
"""
def __init__(
self,
env_fns: Iterator[callable],
observation_space: Space = None,
action_space: Space = None,
copy: bool = True,
):
"""Vectorized environment that serially runs multiple environments.
Args:
env_fns: iterable of callable functions that create the environments.
observation_space: Observation space of a single environment. If ``None``, then the observation space of the first environment is taken.
action_space: Action space of a single environment. If ``None``, then the action space of the first environment is taken.
copy: If ``True``, then the :meth:`reset` and :meth:`step` methods return a copy of the observations.
Raises:
RuntimeError: If the observation space of some sub-environment does not match observation_space (or, by default, the observation space of the first sub-environment).
"""
self.env_fns = env_fns
self.envs = [env_fn() for env_fn in env_fns]
self.copy = copy
self.metadata = self.envs[0].metadata
if (observation_space is None) or (action_space is None):
observation_space = observation_space or self.envs[0].observation_space
action_space = action_space or self.envs[0].action_space
super().__init__(
num_envs=len(self.envs),
observation_space=observation_space,
action_space=action_space,
)
self._check_spaces()
self.observations = create_empty_array(
self.single_observation_space, n=self.num_envs, fn=np.zeros
)
self._rewards = np.zeros((self.num_envs,), dtype=np.float64)
self._dones = np.zeros((self.num_envs,), dtype=np.bool_)
self._actions = None
def seed(self, seed: Optional[Union[int, Sequence[int]]] = None):
"""Sets the seed in all sub-environments.
Args:
seed: The seed
"""
super().seed(seed=seed)
if seed is None:
seed = [None for _ in range(self.num_envs)]
if isinstance(seed, int):
seed = [seed + i for i in range(self.num_envs)]
assert len(seed) == self.num_envs
for env, single_seed in zip(self.envs, seed):
env.seed(single_seed)
def reset_wait(
self,
seed: Optional[Union[int, list[int]]] = None,
return_info: bool = False,
options: Optional[dict] = None,
):
"""Waits for the calls triggered by :meth:`reset_async` to finish and returns the results.
Args:
seed: The reset environment seed
return_info: If to return information
options: Option information for the environment reset
Returns:
The reset observation of the environment and reset information
"""
if seed is None:
seed = [None for _ in range(self.num_envs)]
if isinstance(seed, int):
seed = [seed + i for i in range(self.num_envs)]
assert len(seed) == self.num_envs
self._dones[:] = False
observations = []
infos = {}
for i, (env, single_seed) in enumerate(zip(self.envs, seed)):
kwargs = {}
if single_seed is not None:
kwargs["seed"] = single_seed
if options is not None:
kwargs["options"] = options
if return_info is True:
kwargs["return_info"] = return_info
if not return_info:
observation = env.reset(**kwargs)
observations.append(observation)
else:
observation, info = env.reset(**kwargs)
observations.append(observation)
infos = self._add_info(infos, info, i)
self.observations = concatenate(
self.single_observation_space, observations, self.observations
)
if not return_info:
return deepcopy(self.observations) if self.copy else self.observations
else:
return (
deepcopy(self.observations) if self.copy else self.observations
), infos
def step_async(self, actions):
"""Sets :attr:`_actions` for use by the :meth:`step_wait` by converting the ``actions`` to an iterable version."""
self._actions = iterate(self.action_space, actions)
def step_wait(self):
"""Steps through each of the environments returning the batched results.
Returns:
The batched environment step results
"""
observations, infos = [], {}
for i, (env, action) in enumerate(zip(self.envs, self._actions)):
observation, self._rewards[i], self._dones[i], info = env.step(action)
if self._dones[i]:
info["terminal_observation"] = observation
observation = env.reset()
observations.append(observation)
infos = self._add_info(infos, info, i)
self.observations = concatenate(
self.single_observation_space, observations, self.observations
)
return (
deepcopy(self.observations) if self.copy else self.observations,
np.copy(self._rewards),
np.copy(self._dones),
infos,
)
def call(self, name, *args, **kwargs) -> tuple:
"""Calls the method with name and applies args and kwargs.
Args:
name: The method name
*args: The method args
**kwargs: The method kwargs
Returns:
Tuple of results
"""
results = []
for env in self.envs:
function = getattr(env, name)
if callable(function):
results.append(function(*args, **kwargs))
else:
results.append(function)
return tuple(results)
def set_attr(self, name: str, values: Union[list, tuple, Any]):
"""Sets an attribute of the sub-environments.
Args:
name: The property name to change
values: Values of the property to be set to. If ``values`` is a list or
tuple, then it corresponds to the values for each individual
environment, otherwise, a single value is set for all environments.
"""
if not isinstance(values, (list, tuple)):
values = [values for _ in range(self.num_envs)]
if len(values) != self.num_envs:
raise ValueError(
"Values must be a list or tuple with length equal to the "
f"number of environments. Got `{len(values)}` values for "
f"{self.num_envs} environments."
)
for env, value in zip(self.envs, values):
setattr(env, name, value)
def close_extras(self, **kwargs):
"""Close the environments."""
[env.close() for env in self.envs]
def _check_spaces(self) -> bool:
for env in self.envs:
if not (env.observation_space == self.single_observation_space):
raise RuntimeError(
"Some environments have an observation space different from "
f"`{self.single_observation_space}`. In order to batch observations, "
"the observation spaces from all environments must be equal."
)
if not (env.action_space == self.single_action_space):
raise RuntimeError(
"Some environments have an action space different from "
f"`{self.single_action_space}`. In order to batch actions, the "
"action spaces from all environments must be equal."
)
return True