Files
Gymnasium/gym/envs/tests/test_envs.py
2016-08-24 08:24:10 -07:00

90 lines
2.9 KiB
Python

import numpy as np
from nose2 import tools
import os
import logging
logger = logging.getLogger(__name__)
import gym
from gym import envs
def should_skip_env_spec_for_tests(spec):
# We skip tests for envs that require dependencies or are otherwise
# troublesome to run frequently
# Skip mujoco tests for pull request CI
skip_mujoco = not (os.environ.get('MUJOCO_KEY_BUNDLE') or os.path.exists(os.path.expanduser('~/.mujoco')))
if skip_mujoco and spec._entry_point.startswith('gym.envs.mujoco:'):
return True
# TODO(jonas 2016-05-11): Re-enable these tests after fixing box2d-py
if spec._entry_point.startswith('gym.envs.box2d:'):
logger.warn("Skipping tests for box2d env {}".format(spec._entry_point))
return True
# Skip ConvergenceControl tests (the only env in parameter_tuning) according to pull #104
if spec._entry_point.startswith('gym.envs.parameter_tuning:'):
logger.warn("Skipping tests for parameter_tuning env {}".format(spec._entry_point))
return True
return False
# This runs a smoketest on each official registered env. We may want
# to try also running environments which are not officially registered
# envs.
specs = [spec for spec in envs.registry.all() if spec._entry_point is not None]
@tools.params(*specs)
def test_env(spec):
if should_skip_env_spec_for_tests(spec):
return
env = spec.make()
ob_space = env.observation_space
act_space = env.action_space
ob = env.reset()
assert ob_space.contains(ob), 'Reset observation: {!r} not in space'.format(ob)
a = act_space.sample()
observation, reward, done, _info = env.step(a)
assert ob_space.contains(observation), 'Step observation: {!r} not in space'.format(observation)
assert np.isscalar(reward), "{} is not a scalar for {}".format(reward, env)
assert isinstance(done, bool), "Expected {} to be a boolean".format(done)
for mode in env.metadata.get('render.modes', []):
env.render(mode=mode)
env.render(close=True)
# Make sure we can render the environment after close.
for mode in env.metadata.get('render.modes', []):
env.render(mode=mode)
env.render(close=True)
env.close()
# Run a longer rollout on some environments
def test_random_rollout():
for env in [envs.make('CartPole-v0'), envs.make('FrozenLake-v0')]:
agent = lambda ob: env.action_space.sample()
ob = env.reset()
for _ in range(10):
assert env.observation_space.contains(ob)
a = agent(ob)
assert env.action_space.contains(a)
(ob, _reward, done, _info) = env.step(a)
if done: break
def test_double_close():
class TestEnv(gym.Env):
def __init__(self):
self.close_count = 0
def _close(self):
self.close_count += 1
env = TestEnv()
assert env.close_count == 0
env.close()
assert env.close_count == 1
env.close()
assert env.close_count == 1