Files
Gymnasium/gym/spaces/box.py
Xingdong Zuo 6497c9f1c6 Delete prng.py (#1196)
* Delete prng.py

Since it seems like this seeding function is rarely used.

* Update __init__.py

* Update kellycoinflip.py

* Update core.py

* Update box.py

* Update discrete.py

* Update multi_binary.py

* Update multi_discrete.py

* Update test_determinism.py

* Update test_determinism.py

* Update test_determinism.py

* Update core.py

* Update box.py

* Update test_determinism.py

* Update core.py

* Update box.py

* Update discrete.py

* Update multi_binary.py

* Update multi_discrete.py

* Update dict_space.py

* Update tuple_space.py

* Update core.py

* Create space.py

* Update __init__.py

* Update __init__.py

* Update box.py

* Update dict_space.py

* Update discrete.py

* Update dict_space.py

* Update multi_binary.py

* Update multi_discrete.py

* Update tuple_space.py

* Update discrete.py

* Update box.py

* Update dict_space.py

* Update multi_binary.py

* Update multi_discrete.py

* Update tuple_space.py

* Update multi_discrete.py

* Update multi_binary.py

* Update dict_space.py

* Update box.py

* Update test_determinism.py

* Update kellycoinflip.py

* Update space.py
2019-01-30 13:39:55 -08:00

60 lines
2.0 KiB
Python

import numpy as np
import gym
from gym import logger
from .space import Space
class Box(Space):
"""
A box in R^n.
I.e., each coordinate is bounded.
Example usage:
self.action_space = spaces.Box(low=-10, high=10, shape=(1,))
"""
def __init__(self, low=None, high=None, shape=None, dtype=None):
"""
Two kinds of valid input:
Box(low=-1.0, high=1.0, shape=(3,4)) # low and high are scalars, and shape is provided
Box(low=np.array([-1.0,-2.0]), high=np.array([2.0,4.0])) # low and high are arrays of the same shape
"""
if shape is None:
assert low.shape == high.shape
shape = low.shape
else:
assert np.isscalar(low) and np.isscalar(high)
low = low + np.zeros(shape)
high = high + np.zeros(shape)
if dtype is None: # Autodetect type
if (high == 255).all():
dtype = np.uint8
else:
dtype = np.float32
logger.warn("gym.spaces.Box autodetected dtype as {}. Please provide explicit dtype.".format(dtype))
self.low = low.astype(dtype)
self.high = high.astype(dtype)
super().__init__(shape, dtype)
self.np_random = np.random.RandomState()
def seed(self, seed):
self.np_random.seed(seed)
def sample(self):
return self.np_random.uniform(low=self.low, high=self.high + (0 if self.dtype.kind == 'f' else 1), size=self.low.shape).astype(self.dtype)
def contains(self, x):
return x.shape == self.shape and (x >= self.low).all() and (x <= self.high).all()
def to_jsonable(self, sample_n):
return np.array(sample_n).tolist()
def from_jsonable(self, sample_n):
return [np.asarray(sample) for sample in sample_n]
def __repr__(self):
return "Box" + str(self.shape)
def __eq__(self, other):
return np.allclose(self.low, other.low) and np.allclose(self.high, other.high)