Files
Gymnasium/tests/vector/test_spaces.py

201 lines
6.8 KiB
Python

import copy
import numpy as np
import pytest
from numpy.testing import assert_array_equal
from gymnasium.spaces import Box, Dict, MultiDiscrete, Space, Tuple
from gymnasium.vector.utils.spaces import batch_space, iterate
from tests.vector.utils import CustomSpace, assert_rng_equal, custom_spaces, spaces
expected_batch_spaces_4 = [
Box(low=-1.0, high=1.0, shape=(4,), dtype=np.float64),
Box(low=0.0, high=10.0, shape=(4, 1), dtype=np.float64),
Box(
low=np.array(
[[-1.0, 0.0, 0.0], [-1.0, 0.0, 0.0], [-1.0, 0.0, 0.0], [-1.0, 0.0, 0.0]]
),
high=np.array(
[[1.0, 1.0, 1.0], [1.0, 1.0, 1.0], [1.0, 1.0, 1.0], [1.0, 1.0, 1.0]]
),
dtype=np.float64,
),
Box(
low=np.array(
[
[[-1.0, 0.0], [0.0, -1.0]],
[[-1.0, 0.0], [0.0, -1.0]],
[[-1.0, 0.0], [0.0, -1]],
[[-1.0, 0.0], [0.0, -1.0]],
]
),
high=np.ones((4, 2, 2)),
dtype=np.float64,
),
Box(low=0, high=255, shape=(4,), dtype=np.uint8),
Box(low=0, high=255, shape=(4, 32, 32, 3), dtype=np.uint8),
MultiDiscrete([2, 2, 2, 2]),
Box(low=-2, high=2, shape=(4,), dtype=np.int64),
Tuple((MultiDiscrete([3, 3, 3, 3]), MultiDiscrete([5, 5, 5, 5]))),
Tuple(
(
MultiDiscrete([7, 7, 7, 7]),
Box(
low=np.array([[0.0, -1.0], [0.0, -1.0], [0.0, -1.0], [0.0, -1]]),
high=np.array([[1.0, 1.0], [1.0, 1.0], [1.0, 1.0], [1.0, 1.0]]),
dtype=np.float64,
),
)
),
Box(
low=np.array([[0, 0, 0], [0, 0, 0], [0, 0, 0], [0, 0, 0]]),
high=np.array([[10, 12, 16], [10, 12, 16], [10, 12, 16], [10, 12, 16]]),
dtype=np.int64,
),
Box(low=0, high=1, shape=(4, 19), dtype=np.int8),
Dict(
{
"position": MultiDiscrete([23, 23, 23, 23]),
"velocity": Box(low=0.0, high=1.0, shape=(4, 1), dtype=np.float64),
}
),
Dict(
{
"position": Dict(
{
"x": MultiDiscrete([29, 29, 29, 29]),
"y": MultiDiscrete([31, 31, 31, 31]),
}
),
"velocity": Tuple(
(
MultiDiscrete([37, 37, 37, 37]),
Box(low=0, high=255, shape=(4,), dtype=np.uint8),
)
),
}
),
]
expected_custom_batch_spaces_4 = [
Tuple((CustomSpace(), CustomSpace(), CustomSpace(), CustomSpace())),
Tuple(
(
Tuple((CustomSpace(), CustomSpace(), CustomSpace(), CustomSpace())),
Box(low=0, high=255, shape=(4,), dtype=np.uint8),
)
),
]
@pytest.mark.parametrize(
"space,expected_batch_space_4",
list(zip(spaces, expected_batch_spaces_4)),
ids=[space.__class__.__name__ for space in spaces],
)
def test_batch_space(space, expected_batch_space_4):
batch_space_4 = batch_space(space, n=4)
assert batch_space_4 == expected_batch_space_4
@pytest.mark.parametrize(
"space,expected_batch_space_4",
list(zip(custom_spaces, expected_custom_batch_spaces_4)),
ids=[space.__class__.__name__ for space in custom_spaces],
)
def test_batch_space_custom_space(space, expected_batch_space_4):
batch_space_4 = batch_space(space, n=4)
assert batch_space_4 == expected_batch_space_4
@pytest.mark.parametrize(
"space,batch_space",
list(zip(spaces, expected_batch_spaces_4)),
ids=[space.__class__.__name__ for space in spaces],
)
def test_iterate(space, batch_space):
items = batch_space.sample()
iterator = iterate(batch_space, items)
i = 0
for i, item in enumerate(iterator):
assert item in space
assert i == 3
@pytest.mark.parametrize(
"space,batch_space",
list(zip(custom_spaces, expected_custom_batch_spaces_4)),
ids=[space.__class__.__name__ for space in custom_spaces],
)
def test_iterate_custom_space(space, batch_space):
items = batch_space.sample()
iterator = iterate(batch_space, items)
i = 0
for i, item in enumerate(iterator):
assert item in space
assert i == 3
@pytest.mark.parametrize(
"space", spaces, ids=[space.__class__.__name__ for space in spaces]
)
@pytest.mark.parametrize("n", [4, 5], ids=[f"n={n}" for n in [4, 5]])
@pytest.mark.parametrize(
"base_seed", [123, 456], ids=[f"seed={base_seed}" for base_seed in [123, 456]]
)
def test_rng_different_at_each_index(space: Space, n: int, base_seed: int):
"""
Tests that the rng values produced at each index are different
to prevent if the rng is copied for each subspace
"""
space.seed(base_seed)
batched_space = batch_space(space, n)
assert space.np_random is not batched_space.np_random
assert_rng_equal(space.np_random, batched_space.np_random)
batched_sample = batched_space.sample()
sample = list(iterate(batched_space, batched_sample))
assert not all(np.all(element == sample[0]) for element in sample), sample
@pytest.mark.parametrize(
"space", spaces, ids=[space.__class__.__name__ for space in spaces]
)
@pytest.mark.parametrize("n", [1, 2, 5], ids=[f"n={n}" for n in [1, 2, 5]])
@pytest.mark.parametrize(
"base_seed", [123, 456], ids=[f"seed={base_seed}" for base_seed in [123, 456]]
)
def test_deterministic(space: Space, n: int, base_seed: int):
"""Tests the batched spaces are deterministic by using a copied version"""
# Copy the spaces and check that the np_random are not reference equal
space_a = space
space_a.seed(base_seed)
space_b = copy.deepcopy(space_a)
assert_rng_equal(space_a.np_random, space_b.np_random)
assert space_a.np_random is not space_b.np_random
# Batch the spaces and check that the np_random are not reference equal
space_a_batched = batch_space(space_a, n)
space_b_batched = batch_space(space_b, n)
assert_rng_equal(space_a_batched.np_random, space_b_batched.np_random)
assert space_a_batched.np_random is not space_b_batched.np_random
# Create that the batched space is not reference equal to the origin spaces
assert space_a.np_random is not space_a_batched.np_random
# Check that batched space a and b random number generator are not effected by the original space
space_a.sample()
space_a_batched_sample = space_a_batched.sample()
space_b_batched_sample = space_b_batched.sample()
for a_sample, b_sample in zip(
iterate(space_a_batched, space_a_batched_sample),
iterate(space_b_batched, space_b_batched_sample),
):
if isinstance(a_sample, tuple):
assert len(a_sample) == len(b_sample)
for a_subsample, b_subsample in zip(a_sample, b_sample):
assert_array_equal(a_subsample, b_subsample)
else:
assert_array_equal(a_sample, b_sample)