mirror of
https://github.com/Farama-Foundation/Gymnasium.git
synced 2025-08-01 06:07:08 +00:00
184 lines
6.2 KiB
Python
184 lines
6.2 KiB
Python
"""Helper functions and wrapper class for converting between PyTorch and NumPy."""
|
|
|
|
from __future__ import annotations
|
|
|
|
import functools
|
|
import numbers
|
|
from collections import abc
|
|
from typing import Any, Iterable, Mapping, SupportsFloat, Union
|
|
|
|
import numpy as np
|
|
|
|
import gymnasium as gym
|
|
from gymnasium.core import WrapperActType, WrapperObsType
|
|
from gymnasium.error import DependencyNotInstalled
|
|
|
|
|
|
try:
|
|
import torch
|
|
|
|
Device = Union[str, torch.device]
|
|
except ImportError:
|
|
raise DependencyNotInstalled(
|
|
'Torch is not installed therefore cannot call `torch_to_numpy`, run `pip install "gymnasium[torch]"`'
|
|
)
|
|
|
|
|
|
__all__ = ["NumpyToTorch", "torch_to_numpy", "numpy_to_torch"]
|
|
|
|
|
|
@functools.singledispatch
|
|
def torch_to_numpy(value: Any) -> Any:
|
|
"""Converts a PyTorch Tensor into a NumPy Array."""
|
|
raise Exception(
|
|
f"No known conversion for Torch type ({type(value)}) to NumPy registered. Report as issue on github."
|
|
)
|
|
|
|
|
|
@torch_to_numpy.register(numbers.Number)
|
|
@torch_to_numpy.register(torch.Tensor)
|
|
def _number_torch_to_numpy(value: numbers.Number | torch.Tensor) -> Any:
|
|
"""Convert a python number (int, float, complex) and torch.Tensor to a numpy array."""
|
|
return np.array(value)
|
|
|
|
|
|
@torch_to_numpy.register(abc.Mapping)
|
|
def _mapping_torch_to_numpy(value: Mapping[str, Any]) -> Mapping[str, Any]:
|
|
"""Converts a mapping of PyTorch Tensors into a Dictionary of Jax Array."""
|
|
return type(value)(**{k: torch_to_numpy(v) for k, v in value.items()})
|
|
|
|
|
|
@torch_to_numpy.register(abc.Iterable)
|
|
def _iterable_torch_to_numpy(value: Iterable[Any]) -> Iterable[Any]:
|
|
"""Converts an Iterable from PyTorch Tensors to an iterable of Jax Array."""
|
|
if hasattr(value, "_make"):
|
|
# namedtuple - underline used to prevent potential name conflicts
|
|
# noinspection PyProtectedMember
|
|
return type(value)._make(torch_to_numpy(v) for v in value)
|
|
else:
|
|
return type(value)(torch_to_numpy(v) for v in value)
|
|
|
|
|
|
@functools.singledispatch
|
|
def numpy_to_torch(value: Any, device: Device | None = None) -> Any:
|
|
"""Converts a Jax Array into a PyTorch Tensor."""
|
|
raise Exception(
|
|
f"No known conversion for NumPy type ({type(value)}) to PyTorch registered. Report as issue on github."
|
|
)
|
|
|
|
|
|
@numpy_to_torch.register(numbers.Number)
|
|
@numpy_to_torch.register(np.ndarray)
|
|
def _numpy_to_torch(value: np.ndarray, device: Device | None = None) -> torch.Tensor:
|
|
"""Converts a Jax Array into a PyTorch Tensor."""
|
|
assert torch is not None
|
|
tensor = torch.tensor(value)
|
|
if device:
|
|
return tensor.to(device=device)
|
|
return tensor
|
|
|
|
|
|
@numpy_to_torch.register(abc.Mapping)
|
|
def _numpy_mapping_to_torch(
|
|
value: Mapping[str, Any], device: Device | None = None
|
|
) -> Mapping[str, Any]:
|
|
"""Converts a mapping of Jax Array into a Dictionary of PyTorch Tensors."""
|
|
return type(value)(**{k: numpy_to_torch(v, device) for k, v in value.items()})
|
|
|
|
|
|
@numpy_to_torch.register(abc.Iterable)
|
|
def _numpy_iterable_to_torch(
|
|
value: Iterable[Any], device: Device | None = None
|
|
) -> Iterable[Any]:
|
|
"""Converts an Iterable from Jax Array to an iterable of PyTorch Tensors."""
|
|
if hasattr(value, "_make"):
|
|
# namedtuple - underline used to prevent potential name conflicts
|
|
# noinspection PyProtectedMember
|
|
return type(value)._make(numpy_to_torch(v) for v in value)
|
|
else:
|
|
return type(value)(numpy_to_torch(v) for v in value)
|
|
|
|
|
|
class NumpyToTorch(gym.Wrapper, gym.utils.RecordConstructorArgs):
|
|
"""Wraps a NumPy-based environment such that it can be interacted with PyTorch Tensors.
|
|
|
|
Actions must be provided as PyTorch Tensors and observations will be returned as PyTorch Tensors.
|
|
A vector version of the wrapper exists, :class:`gymnasium.wrappers.vector.NumpyToTorch`.
|
|
|
|
Note:
|
|
For ``rendered`` this is returned as a NumPy array not a pytorch Tensor.
|
|
|
|
Example:
|
|
>>> import torch
|
|
>>> import gymnasium as gym
|
|
>>> env = gym.make("CartPole-v1")
|
|
>>> env = NumpyToTorch(env)
|
|
>>> obs, _ = env.reset(seed=123)
|
|
>>> type(obs)
|
|
<class 'torch.Tensor'>
|
|
>>> action = torch.tensor(env.action_space.sample())
|
|
>>> obs, reward, terminated, truncated, info = env.step(action)
|
|
>>> type(obs)
|
|
<class 'torch.Tensor'>
|
|
>>> type(reward)
|
|
<class 'float'>
|
|
>>> type(terminated)
|
|
<class 'bool'>
|
|
>>> type(truncated)
|
|
<class 'bool'>
|
|
|
|
Change logs:
|
|
* v1.0.0 - Initially added
|
|
"""
|
|
|
|
def __init__(self, env: gym.Env, device: Device | None = None):
|
|
"""Wrapper class to change inputs and outputs of environment to PyTorch tensors.
|
|
|
|
Args:
|
|
env: The Jax-based environment to wrap
|
|
device: The device the torch Tensors should be moved to
|
|
"""
|
|
gym.utils.RecordConstructorArgs.__init__(self, device=device)
|
|
gym.Wrapper.__init__(self, env)
|
|
|
|
self.device: Device | None = device
|
|
|
|
def step(
|
|
self, action: WrapperActType
|
|
) -> tuple[WrapperObsType, SupportsFloat, bool, bool, dict]:
|
|
"""Using a PyTorch based action that is converted to NumPy to be used by the environment.
|
|
|
|
Args:
|
|
action: A PyTorch-based action
|
|
|
|
Returns:
|
|
The PyTorch-based Tensor next observation, reward, termination, truncation, and extra info
|
|
"""
|
|
jax_action = torch_to_numpy(action)
|
|
obs, reward, terminated, truncated, info = self.env.step(jax_action)
|
|
|
|
return (
|
|
numpy_to_torch(obs, self.device),
|
|
float(reward),
|
|
bool(terminated),
|
|
bool(truncated),
|
|
numpy_to_torch(info, self.device),
|
|
)
|
|
|
|
def reset(
|
|
self, *, seed: int | None = None, options: dict[str, Any] | None = None
|
|
) -> tuple[WrapperObsType, dict[str, Any]]:
|
|
"""Resets the environment returning PyTorch-based observation and info.
|
|
|
|
Args:
|
|
seed: The seed for resetting the environment
|
|
options: The options for resetting the environment, these are converted to jax arrays.
|
|
|
|
Returns:
|
|
PyTorch-based observations and info
|
|
"""
|
|
if options:
|
|
options = torch_to_numpy(options)
|
|
|
|
return numpy_to_torch(self.env.reset(seed=seed, options=options), self.device)
|