mirror of
https://github.com/Farama-Foundation/Gymnasium.git
synced 2025-08-01 22:11:25 +00:00
165 lines
4.6 KiB
Python
165 lines
4.6 KiB
Python
"""Testing utilitys for `gymnasium.vector`."""
|
|
|
|
import time
|
|
from typing import Optional
|
|
|
|
import numpy as np
|
|
|
|
import gymnasium as gym
|
|
from gymnasium.spaces import Box, Dict, Discrete, MultiBinary, MultiDiscrete, Tuple
|
|
|
|
|
|
BaseGymSpaces = (Box, Discrete, MultiDiscrete, MultiBinary)
|
|
|
|
|
|
spaces = [
|
|
Box(low=np.array(-1.0), high=np.array(1.0), dtype=np.float64),
|
|
Box(low=np.array([0.0]), high=np.array([10.0]), dtype=np.float64),
|
|
Box(
|
|
low=np.array([-1.0, 0.0, 0.0]), high=np.array([1.0, 1.0, 1.0]), dtype=np.float64
|
|
),
|
|
Box(
|
|
low=np.array([[-1.0, 0.0], [0.0, -1.0]]), high=np.ones((2, 2)), dtype=np.float64
|
|
),
|
|
Box(low=0, high=255, shape=(), dtype=np.uint8),
|
|
Box(low=0, high=255, shape=(32, 32, 3), dtype=np.uint8),
|
|
Discrete(2),
|
|
Discrete(5, start=-2),
|
|
Tuple((Discrete(3), Discrete(5))),
|
|
Tuple(
|
|
(
|
|
Discrete(7),
|
|
Box(low=np.array([0.0, -1.0]), high=np.array([1.0, 1.0]), dtype=np.float64),
|
|
)
|
|
),
|
|
MultiDiscrete([11, 13, 17]),
|
|
MultiBinary(19),
|
|
Dict(
|
|
{
|
|
"position": Discrete(23),
|
|
"velocity": Box(
|
|
low=np.array([0.0]), high=np.array([1.0]), dtype=np.float64
|
|
),
|
|
}
|
|
),
|
|
Dict(
|
|
{
|
|
"position": Dict({"x": Discrete(29), "y": Discrete(31)}),
|
|
"velocity": Tuple(
|
|
(Discrete(37), Box(low=0, high=255, shape=(), dtype=np.uint8))
|
|
),
|
|
}
|
|
),
|
|
]
|
|
|
|
HEIGHT, WIDTH = 64, 64
|
|
|
|
|
|
class SlowEnv(gym.Env):
|
|
"""A custom slow environment."""
|
|
|
|
def __init__(self, slow_reset=0.3):
|
|
"""Initialises the environment with a slow reset parameter used in the `step` and `reset` functions."""
|
|
super().__init__()
|
|
self.slow_reset = slow_reset
|
|
self.observation_space = Box(
|
|
low=0, high=255, shape=(HEIGHT, WIDTH, 3), dtype=np.uint8
|
|
)
|
|
self.action_space = Box(low=0.0, high=1.0, shape=(), dtype=np.float32)
|
|
|
|
def reset(self, *, seed: Optional[int] = None, options: Optional[dict] = None):
|
|
"""Resets the environment with a time sleep."""
|
|
super().reset(seed=seed)
|
|
if self.slow_reset > 0:
|
|
time.sleep(self.slow_reset)
|
|
return self.observation_space.sample(), {}
|
|
|
|
def step(self, action):
|
|
"""Steps through the environment with a time sleep."""
|
|
time.sleep(action)
|
|
observation = self.observation_space.sample()
|
|
reward, terminated, truncated = 0.0, False, False
|
|
return observation, reward, terminated, truncated, {}
|
|
|
|
|
|
class CustomSpace(gym.Space):
|
|
"""Minimal custom observation space."""
|
|
|
|
def sample(self):
|
|
"""Generates a sample from the custom space."""
|
|
return self.np_random.integers(0, 10, ())
|
|
|
|
def contains(self, x):
|
|
"""Check if the element `x` is contained within the space."""
|
|
return 0 <= x <= 10
|
|
|
|
def __eq__(self, other):
|
|
"""Check if the two spaces are equal."""
|
|
return isinstance(other, CustomSpace)
|
|
|
|
|
|
custom_spaces = [
|
|
CustomSpace(),
|
|
Tuple((CustomSpace(), Box(low=0, high=255, shape=(), dtype=np.uint8))),
|
|
]
|
|
|
|
|
|
class CustomSpaceEnv(gym.Env):
|
|
"""An environment with custom spaces for observation and action spaces."""
|
|
|
|
def __init__(self):
|
|
"""Initialise the environment."""
|
|
super().__init__()
|
|
self.observation_space = CustomSpace()
|
|
self.action_space = CustomSpace()
|
|
|
|
def reset(self, *, seed: Optional[int] = None, options: Optional[dict] = None):
|
|
"""Resets the environment."""
|
|
super().reset(seed=seed)
|
|
return "reset", {}
|
|
|
|
def step(self, action):
|
|
"""Steps through the environment."""
|
|
observation = f"step({action:s})"
|
|
reward, terminated, truncated = 0.0, False, False
|
|
return observation, reward, terminated, truncated, {}
|
|
|
|
|
|
def make_env(env_name, seed, **kwargs):
|
|
"""Creates an environment."""
|
|
|
|
def _make():
|
|
env = gym.make(env_name, disable_env_checker=True, **kwargs)
|
|
env.action_space.seed(seed)
|
|
env.reset(seed=seed)
|
|
return env
|
|
|
|
return _make
|
|
|
|
|
|
def make_slow_env(slow_reset, seed):
|
|
"""Creates an environment with slow reset."""
|
|
|
|
def _make():
|
|
env = SlowEnv(slow_reset=slow_reset)
|
|
env.reset(seed=seed)
|
|
return env
|
|
|
|
return _make
|
|
|
|
|
|
def make_custom_space_env(seed):
|
|
"""Creates a custom space environment."""
|
|
|
|
def _make():
|
|
env = CustomSpaceEnv()
|
|
env.reset(seed=seed)
|
|
return env
|
|
|
|
return _make
|
|
|
|
|
|
def assert_rng_equal(rng_1: np.random.Generator, rng_2: np.random.Generator):
|
|
"""Tests whether two random number generators are equal."""
|
|
assert rng_1.bit_generator.state == rng_2.bit_generator.state
|