mirror of
https://github.com/Farama-Foundation/Gymnasium.git
synced 2025-08-28 09:17:18 +00:00
36 lines
1.1 KiB
Python
36 lines
1.1 KiB
Python
import numpy as np
|
|
import pytest
|
|
|
|
import gym
|
|
from gym.wrappers import TransformObservation
|
|
|
|
|
|
@pytest.mark.parametrize("env_id", ["CartPole-v1", "Pendulum-v1"])
|
|
def test_transform_observation(env_id):
|
|
def affine_transform(x):
|
|
return 3 * x + 2
|
|
|
|
env = gym.make(env_id, disable_env_checker=True)
|
|
wrapped_env = TransformObservation(
|
|
gym.make(env_id, disable_env_checker=True), lambda obs: affine_transform(obs)
|
|
)
|
|
|
|
obs, info = env.reset(seed=0)
|
|
wrapped_obs, wrapped_obs_info = wrapped_env.reset(seed=0)
|
|
assert np.allclose(wrapped_obs, affine_transform(obs))
|
|
assert isinstance(wrapped_obs_info, dict)
|
|
|
|
action = env.action_space.sample()
|
|
obs, reward, terminated, truncated, _ = env.step(action)
|
|
(
|
|
wrapped_obs,
|
|
wrapped_reward,
|
|
wrapped_terminated,
|
|
wrapped_truncated,
|
|
_,
|
|
) = wrapped_env.step(action)
|
|
assert np.allclose(wrapped_obs, affine_transform(obs))
|
|
assert np.allclose(wrapped_reward, reward)
|
|
assert wrapped_terminated == terminated
|
|
assert wrapped_truncated == truncated
|