mirror of
https://github.com/Farama-Foundation/Gymnasium.git
synced 2025-09-03 10:55:01 +00:00
* Initial version of vectorized environments * Raise an exception in the main process if child process raises an exception * Add list of exposed functions in vector module * Use deepcopy instead of np.copy * Add documentation for vector utils * Add tests for copy in AsyncVectorEnv * Add example in documentation for batch_space * Add cloudpickle dependency in setup.py * Fix __del__ in VectorEnv * Check if all observation spaces are equal in AsyncVectorEnv * Check if all observation spaces are equal in SyncVectorEnv * Fix spaces non equality in SyncVectorEnv for Python 2 * Handle None parameter in create_empty_array * Fix check_observation_space with spaces equality * Raise an exception when operations are out of order in AsyncVectorEnv * Add version requirement for cloudpickle * Use a state instead of binary flags in AsyncVectorEnv * Use numpy.zeros when initializing observations in vectorized environments * Remove poll from public API in AsyncVectorEnv * Remove close_extras from VectorEnv * Add test between AsyncVectorEnv and SyncVectorEnv * Remove close in check_observation_space * Add documentation for seed and close * Refactor exceptions for AsyncVectorEnv * Close pipes if the environment raises an error * Add tests for out of order operations * Change default argument in create_empty_array to np.zeros * Add get_attr and set_attr methods to VectorEnv * Improve consistency in SyncVectorEnv
63 lines
2.0 KiB
Python
63 lines
2.0 KiB
Python
import numpy as np
|
|
import gym
|
|
import time
|
|
|
|
from gym.spaces import Box, Discrete, MultiDiscrete, MultiBinary, Tuple, Dict
|
|
|
|
spaces = [
|
|
Box(low=np.array(-1.), high=np.array(1.), dtype=np.float64),
|
|
Box(low=np.array([0.]), high=np.array([10.]), dtype=np.float32),
|
|
Box(low=np.array([-1., 0., 0.]), high=np.array([1., 1., 1.]), dtype=np.float32),
|
|
Box(low=np.array([[-1., 0.], [0., -1.]]), high=np.ones((2, 2)), dtype=np.float32),
|
|
Box(low=0, high=255, shape=(), dtype=np.uint8),
|
|
Box(low=0, high=255, shape=(32, 32, 3), dtype=np.uint8),
|
|
Discrete(2),
|
|
Tuple((Discrete(3), Discrete(5))),
|
|
Tuple((Discrete(7), Box(low=np.array([0., -1.]), high=np.array([1., 1.]), dtype=np.float32))),
|
|
MultiDiscrete([11, 13, 17]),
|
|
MultiBinary(19),
|
|
Dict({
|
|
'position': Discrete(23),
|
|
'velocity': Box(low=np.array([0.]), high=np.array([1.]), dtype=np.float32)
|
|
}),
|
|
Dict({
|
|
'position': Dict({'x': Discrete(29), 'y': Discrete(31)}),
|
|
'velocity': Tuple((Discrete(37), Box(low=0, high=255, shape=(), dtype=np.uint8)))
|
|
})
|
|
]
|
|
|
|
HEIGHT, WIDTH = 64, 64
|
|
|
|
class UnittestSlowEnv(gym.Env):
|
|
def __init__(self, slow_reset=0.3):
|
|
super(UnittestSlowEnv, self).__init__()
|
|
self.slow_reset = slow_reset
|
|
self.observation_space = Box(low=0, high=255,
|
|
shape=(HEIGHT, WIDTH, 3), dtype=np.uint8)
|
|
self.action_space = Box(low=0., high=1., shape=(), dtype=np.float32)
|
|
|
|
def reset(self):
|
|
if self.slow_reset > 0:
|
|
time.sleep(self.slow_reset)
|
|
return self.observation_space.sample()
|
|
|
|
def step(self, action):
|
|
time.sleep(action)
|
|
observation = self.observation_space.sample()
|
|
reward, done = 0., False
|
|
return observation, reward, done, {}
|
|
|
|
def make_env(env_name, seed):
|
|
def _make():
|
|
env = gym.make(env_name)
|
|
env.seed(seed)
|
|
return env
|
|
return _make
|
|
|
|
def make_slow_env(slow_reset, seed):
|
|
def _make():
|
|
env = UnittestSlowEnv(slow_reset=slow_reset)
|
|
env.seed(seed)
|
|
return env
|
|
return _make
|