Files
Gymnasium/gym/envs/mujoco/half_cheetah.py
Rodrigo de Lazcano 61a39f41bc Initialize observation spaces and pytest (#2929)
* Remove step initialization for mujoco obs spaces

	* remove step initialization for mujoco obs space

	* pre-commit

pytest obs space mujoco
2022-06-30 10:59:59 -04:00

64 lines
1.8 KiB
Python

import numpy as np
from gym import utils
from gym.envs.mujoco import mujoco_env
from gym.spaces import Box
class HalfCheetahEnv(mujoco_env.MujocoEnv, utils.EzPickle):
metadata = {
"render_modes": [
"human",
"rgb_array",
"depth_array",
"single_rgb_array",
"single_depth_array",
],
"render_fps": 20,
}
def __init__(self, **kwargs):
observation_space = Box(low=-np.inf, high=np.inf, shape=(17,), dtype=np.float64)
mujoco_env.MujocoEnv.__init__(
self,
"half_cheetah.xml",
5,
mujoco_bindings="mujoco_py",
observation_space=observation_space,
**kwargs
)
utils.EzPickle.__init__(self)
def step(self, action):
xposbefore = self.sim.data.qpos[0]
self.do_simulation(action, self.frame_skip)
xposafter = self.sim.data.qpos[0]
self.renderer.render_step()
ob = self._get_obs()
reward_ctrl = -0.1 * np.square(action).sum()
reward_run = (xposafter - xposbefore) / self.dt
reward = reward_ctrl + reward_run
done = False
return ob, reward, done, dict(reward_run=reward_run, reward_ctrl=reward_ctrl)
def _get_obs(self):
return np.concatenate(
[
self.sim.data.qpos.flat[1:],
self.sim.data.qvel.flat,
]
)
def reset_model(self):
qpos = self.init_qpos + self.np_random.uniform(
low=-0.1, high=0.1, size=self.model.nq
)
qvel = self.init_qvel + self.np_random.standard_normal(self.model.nv) * 0.1
self.set_state(qpos, qvel)
return self._get_obs()
def viewer_setup(self):
self.viewer.cam.distance = self.model.stat.extent * 0.5