Files
Gymnasium/gym/envs/mujoco/reacher.py
Rodrigo de Lazcano 61a39f41bc Initialize observation spaces and pytest (#2929)
* Remove step initialization for mujoco obs spaces

	* remove step initialization for mujoco obs space

	* pre-commit

pytest obs space mujoco
2022-06-30 10:59:59 -04:00

76 lines
2.2 KiB
Python

import numpy as np
from gym import utils
from gym.envs.mujoco import mujoco_env
from gym.spaces import Box
class ReacherEnv(mujoco_env.MujocoEnv, utils.EzPickle):
metadata = {
"render_modes": [
"human",
"rgb_array",
"depth_array",
"single_rgb_array",
"single_depth_array",
],
"render_fps": 50,
}
def __init__(self, **kwargs):
utils.EzPickle.__init__(self)
observation_space = Box(low=-np.inf, high=np.inf, shape=(11,), dtype=np.float64)
mujoco_env.MujocoEnv.__init__(
self,
"reacher.xml",
2,
mujoco_bindings="mujoco_py",
observation_space=observation_space,
**kwargs
)
def step(self, a):
vec = self.get_body_com("fingertip") - self.get_body_com("target")
reward_dist = -np.linalg.norm(vec)
reward_ctrl = -np.square(a).sum()
reward = reward_dist + reward_ctrl
self.do_simulation(a, self.frame_skip)
self.renderer.render_step()
ob = self._get_obs()
done = False
return ob, reward, done, dict(reward_dist=reward_dist, reward_ctrl=reward_ctrl)
def viewer_setup(self):
self.viewer.cam.trackbodyid = 0
def reset_model(self):
qpos = (
self.np_random.uniform(low=-0.1, high=0.1, size=self.model.nq)
+ self.init_qpos
)
while True:
self.goal = self.np_random.uniform(low=-0.2, high=0.2, size=2)
if np.linalg.norm(self.goal) < 0.2:
break
qpos[-2:] = self.goal
qvel = self.init_qvel + self.np_random.uniform(
low=-0.005, high=0.005, size=self.model.nv
)
qvel[-2:] = 0
self.set_state(qpos, qvel)
return self._get_obs()
def _get_obs(self):
theta = self.sim.data.qpos.flat[:2]
return np.concatenate(
[
np.cos(theta),
np.sin(theta),
self.sim.data.qpos.flat[2:],
self.sim.data.qvel.flat[:2],
self.get_body_com("fingertip") - self.get_body_com("target"),
]
)