mirror of
https://github.com/Farama-Foundation/Gymnasium.git
synced 2025-08-02 06:16:32 +00:00
* Added Sequence space, updated flatten functions to work with Sequence, Graph. WIP. * Small fixes, added Sequence space to tests * Replace Optional[Any] by Any * Added tests for flattening of non-numpy-flattenable spaces * Return all seeds
602 lines
19 KiB
Python
602 lines
19 KiB
Python
import re
|
|
from collections import OrderedDict
|
|
|
|
import numpy as np
|
|
import pytest
|
|
|
|
from gym.spaces import (
|
|
Box,
|
|
Dict,
|
|
Discrete,
|
|
Graph,
|
|
GraphInstance,
|
|
MultiBinary,
|
|
MultiDiscrete,
|
|
Sequence,
|
|
Tuple,
|
|
utils,
|
|
)
|
|
|
|
homogeneous_spaces = [
|
|
Discrete(3),
|
|
Box(low=0.0, high=np.inf, shape=(2, 2)),
|
|
Box(low=0.0, high=np.inf, shape=(2, 2), dtype=np.float16),
|
|
Tuple([Discrete(5), Discrete(10)]),
|
|
Tuple(
|
|
[
|
|
Discrete(5),
|
|
Box(low=np.array([0.0, 0.0]), high=np.array([1.0, 5.0]), dtype=np.float64),
|
|
]
|
|
),
|
|
Tuple((Discrete(5), Discrete(2), Discrete(2))),
|
|
MultiDiscrete([2, 2, 10]),
|
|
MultiBinary(10),
|
|
Dict(
|
|
{
|
|
"position": Discrete(5),
|
|
"velocity": Box(
|
|
low=np.array([0.0, 0.0]), high=np.array([1.0, 5.0]), dtype=np.float64
|
|
),
|
|
}
|
|
),
|
|
Discrete(3, start=2),
|
|
Discrete(8, start=-5),
|
|
]
|
|
|
|
flatdims = [3, 4, 4, 15, 7, 9, 14, 10, 7, 3, 8]
|
|
|
|
non_homogenous_spaces = [
|
|
Graph(node_space=Box(low=-100, high=100, shape=(2, 2)), edge_space=Discrete(5)), #
|
|
Graph(node_space=Discrete(5), edge_space=Box(low=-100, high=100, shape=(2, 2))), #
|
|
Graph(node_space=Discrete(5), edge_space=None), #
|
|
Sequence(Discrete(4)), #
|
|
Sequence(Box(-10, 10, shape=(2, 2))), #
|
|
Sequence(Tuple([Box(-10, 10, shape=(2,)), Box(-10, 10, shape=(2,))])), #
|
|
Dict(a=Sequence(Discrete(4)), b=Box(-10, 10, shape=(2, 2))), #
|
|
Dict(
|
|
a=Graph(node_space=Discrete(4), edge_space=Discrete(4)),
|
|
b=Box(-10, 10, shape=(2, 2)),
|
|
), #
|
|
Tuple([Sequence(Discrete(4)), Box(-10, 10, shape=(2, 2))]), #
|
|
Tuple(
|
|
[
|
|
Graph(node_space=Discrete(4), edge_space=Discrete(4)),
|
|
Box(-10, 10, shape=(2, 2)),
|
|
]
|
|
), #
|
|
Sequence(Graph(node_space=Box(-100, 100, shape=(2, 2)), edge_space=Discrete(4))), #
|
|
Dict(
|
|
a=Dict(
|
|
a=Sequence(Box(-100, 100, shape=(2, 2))), b=Box(-100, 100, shape=(2, 2))
|
|
),
|
|
b=Tuple([Box(-100, 100, shape=(2,)), Box(-100, 100, shape=(2,))]),
|
|
), #
|
|
Dict(
|
|
a=Dict(
|
|
a=Graph(node_space=Box(-100, 100, shape=(2, 2)), edge_space=None),
|
|
b=Box(-100, 100, shape=(2, 2)),
|
|
),
|
|
b=Tuple([Box(-100, 100, shape=(2,)), Box(-100, 100, shape=(2,))]),
|
|
),
|
|
]
|
|
|
|
|
|
@pytest.mark.parametrize("space", non_homogenous_spaces)
|
|
def test_non_flattenable(space):
|
|
assert space.is_np_flattenable is False
|
|
with pytest.raises(
|
|
ValueError,
|
|
match=re.escape(
|
|
"cannot be flattened to a numpy array, probably because it contains a `Graph` or `Sequence` subspace"
|
|
),
|
|
):
|
|
utils.flatdim(space)
|
|
|
|
|
|
@pytest.mark.parametrize(["space", "flatdim"], zip(homogeneous_spaces, flatdims))
|
|
def test_flatdim(space, flatdim):
|
|
assert space.is_np_flattenable
|
|
dim = utils.flatdim(space)
|
|
assert dim == flatdim, f"Expected {dim} to equal {flatdim}"
|
|
|
|
|
|
@pytest.mark.parametrize("space", homogeneous_spaces)
|
|
def test_flatten_space_boxes(space):
|
|
flat_space = utils.flatten_space(space)
|
|
assert isinstance(flat_space, Box), f"Expected {type(flat_space)} to equal {Box}"
|
|
flatdim = utils.flatdim(space)
|
|
(single_dim,) = flat_space.shape
|
|
assert single_dim == flatdim, f"Expected {single_dim} to equal {flatdim}"
|
|
|
|
|
|
@pytest.mark.parametrize("space", homogeneous_spaces + non_homogenous_spaces)
|
|
def test_flat_space_contains_flat_points(space):
|
|
some_samples = [space.sample() for _ in range(10)]
|
|
flattened_samples = [utils.flatten(space, sample) for sample in some_samples]
|
|
flat_space = utils.flatten_space(space)
|
|
for i, flat_sample in enumerate(flattened_samples):
|
|
assert flat_space.contains(
|
|
flat_sample
|
|
), f"Expected sample #{i} {flat_sample} to be in {flat_space}"
|
|
|
|
|
|
@pytest.mark.parametrize("space", homogeneous_spaces)
|
|
def test_flatten_dim(space):
|
|
sample = utils.flatten(space, space.sample())
|
|
(single_dim,) = sample.shape
|
|
flatdim = utils.flatdim(space)
|
|
assert single_dim == flatdim, f"Expected {single_dim} to equal {flatdim}"
|
|
|
|
|
|
@pytest.mark.parametrize("space", homogeneous_spaces + non_homogenous_spaces)
|
|
def test_flatten_roundtripping(space):
|
|
some_samples = [space.sample() for _ in range(10)]
|
|
flattened_samples = [utils.flatten(space, sample) for sample in some_samples]
|
|
roundtripped_samples = [
|
|
utils.unflatten(space, sample) for sample in flattened_samples
|
|
]
|
|
for i, (original, roundtripped) in enumerate(
|
|
zip(some_samples, roundtripped_samples)
|
|
):
|
|
assert compare_nested(
|
|
original, roundtripped
|
|
), f"Expected sample #{i} {original} to equal {roundtripped}"
|
|
assert space.contains(roundtripped)
|
|
|
|
|
|
def compare_nested(left, right):
|
|
if type(left) != type(right):
|
|
return False
|
|
elif isinstance(left, np.ndarray) and isinstance(right, np.ndarray):
|
|
return left.shape == right.shape and np.allclose(left, right)
|
|
elif isinstance(left, OrderedDict) and isinstance(right, OrderedDict):
|
|
res = len(left) == len(right)
|
|
for ((left_key, left_value), (right_key, right_value)) in zip(
|
|
left.items(), right.items()
|
|
):
|
|
if not res:
|
|
return False
|
|
res = left_key == right_key and compare_nested(left_value, right_value)
|
|
return res
|
|
elif isinstance(left, (tuple, list)) and isinstance(right, (tuple, list)):
|
|
res = len(left) == len(right)
|
|
for (x, y) in zip(left, right):
|
|
if not res:
|
|
return False
|
|
res = compare_nested(x, y)
|
|
return res
|
|
else:
|
|
return left == right
|
|
|
|
|
|
"""
|
|
Expecteded flattened types are based off:
|
|
1. The type that the space is hardcoded as(ie. multi_discrete=np.int64, discrete=np.int64, multi_binary=np.int8)
|
|
2. The type that the space is instantiated with(ie. box=np.float32 by default unless instantiated with a different type)
|
|
3. The smallest type that the composite space(tuple, dict) can be represented as. In flatten, this is determined
|
|
internally by numpy when np.concatenate is called.
|
|
"""
|
|
|
|
expected_flattened_dtypes = [
|
|
np.int64,
|
|
np.float32,
|
|
np.float16,
|
|
np.int64,
|
|
np.float64,
|
|
np.int64,
|
|
np.int64,
|
|
np.int8,
|
|
np.float64,
|
|
np.int64,
|
|
np.int64,
|
|
]
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
["original_space", "expected_flattened_dtype"],
|
|
zip(homogeneous_spaces, expected_flattened_dtypes),
|
|
)
|
|
def test_dtypes(original_space, expected_flattened_dtype):
|
|
flattened_space = utils.flatten_space(original_space)
|
|
|
|
original_sample = original_space.sample()
|
|
flattened_sample = utils.flatten(original_space, original_sample)
|
|
unflattened_sample = utils.unflatten(original_space, flattened_sample)
|
|
|
|
assert flattened_space.contains(
|
|
flattened_sample
|
|
), "Expected flattened_space to contain flattened_sample"
|
|
assert (
|
|
flattened_space.dtype == expected_flattened_dtype
|
|
), f"Expected flattened_space's dtype to equal {expected_flattened_dtype}"
|
|
|
|
assert flattened_sample.dtype == flattened_space.dtype, (
|
|
"Expected flattened_space's dtype to equal " "flattened_sample's dtype "
|
|
)
|
|
|
|
compare_sample_types(original_space, original_sample, unflattened_sample)
|
|
|
|
|
|
def compare_sample_types(original_space, original_sample, unflattened_sample):
|
|
if isinstance(original_space, Discrete):
|
|
assert isinstance(unflattened_sample, int), (
|
|
"Expected unflattened_sample to be an int. unflattened_sample: "
|
|
"{} original_sample: {}".format(unflattened_sample, original_sample)
|
|
)
|
|
elif isinstance(original_space, Tuple):
|
|
for index in range(len(original_space)):
|
|
compare_sample_types(
|
|
original_space.spaces[index],
|
|
original_sample[index],
|
|
unflattened_sample[index],
|
|
)
|
|
elif isinstance(original_space, Dict):
|
|
for key, space in original_space.spaces.items():
|
|
compare_sample_types(space, original_sample[key], unflattened_sample[key])
|
|
else:
|
|
assert unflattened_sample.dtype == original_sample.dtype, (
|
|
"Expected unflattened_sample's dtype to equal "
|
|
"original_sample's dtype. unflattened_sample: "
|
|
"{} original_sample: {}".format(unflattened_sample, original_sample)
|
|
)
|
|
|
|
|
|
homogeneous_samples = [
|
|
2,
|
|
np.array([[1.0, 3.0], [5.0, 8.0]], dtype=np.float32),
|
|
np.array([[1.0, 3.0], [5.0, 8.0]], dtype=np.float16),
|
|
(3, 7),
|
|
(2, np.array([0.5, 3.5], dtype=np.float32)),
|
|
(3, 0, 1),
|
|
np.array([0, 1, 7], dtype=np.int64),
|
|
np.array([0, 1, 1, 0, 0, 0, 1, 1, 1, 1], dtype=np.int8),
|
|
OrderedDict(
|
|
[("position", 3), ("velocity", np.array([0.5, 3.5], dtype=np.float32))]
|
|
),
|
|
3,
|
|
-2,
|
|
]
|
|
|
|
|
|
expected_flattened_hom_samples = [
|
|
np.array([0, 0, 1], dtype=np.int64),
|
|
np.array([1.0, 3.0, 5.0, 8.0], dtype=np.float32),
|
|
np.array([1.0, 3.0, 5.0, 8.0], dtype=np.float16),
|
|
np.array([0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0], dtype=np.int64),
|
|
np.array([0, 0, 1, 0, 0, 0.5, 3.5], dtype=np.float64),
|
|
np.array([0, 0, 0, 1, 0, 1, 0, 0, 1], dtype=np.int64),
|
|
np.array([1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0], dtype=np.int64),
|
|
np.array([0, 1, 1, 0, 0, 0, 1, 1, 1, 1], dtype=np.int8),
|
|
np.array([0, 0, 0, 1, 0, 0.5, 3.5], dtype=np.float64),
|
|
np.array([0, 1, 0], dtype=np.int64),
|
|
np.array([0, 0, 0, 1, 0, 0, 0, 0], dtype=np.int64),
|
|
]
|
|
|
|
non_homogenous_samples = [
|
|
GraphInstance(
|
|
np.array([[[1, 2], [3, 4]], [[5, 6], [7, 8]]], dtype=np.float32),
|
|
np.array(
|
|
[
|
|
0,
|
|
],
|
|
dtype=int,
|
|
),
|
|
np.array([[0, 1]], dtype=int),
|
|
),
|
|
GraphInstance(
|
|
np.array([0, 1], dtype=int),
|
|
np.array([[[1, 2], [3, 4]]], dtype=np.float32),
|
|
np.array([[0, 1]], dtype=int),
|
|
),
|
|
GraphInstance(np.array([0, 1], dtype=int), None, np.array([[0, 1]], dtype=int)),
|
|
(0, 1, 2),
|
|
(
|
|
np.array([[0, 1], [2, 3]], dtype=np.float32),
|
|
np.array([[4, 5], [6, 7]], dtype=np.float32),
|
|
),
|
|
(
|
|
(np.array([0, 1], dtype=np.float32), np.array([2, 3], dtype=np.float32)),
|
|
(np.array([4, 5], dtype=np.float32), np.array([6, 7], dtype=np.float32)),
|
|
),
|
|
OrderedDict(
|
|
[("a", (0, 1, 2)), ("b", np.array([[0, 1], [2, 3]], dtype=np.float32))]
|
|
),
|
|
OrderedDict(
|
|
[
|
|
(
|
|
"a",
|
|
GraphInstance(
|
|
np.array([1, 2], dtype=np.int),
|
|
np.array(
|
|
[
|
|
0,
|
|
],
|
|
dtype=int,
|
|
),
|
|
np.array([[0, 1]], dtype=int),
|
|
),
|
|
),
|
|
("b", np.array([[0, 1], [2, 3]], dtype=np.float32)),
|
|
]
|
|
),
|
|
((0, 1, 2), np.array([[0, 1], [2, 3]], dtype=np.float32)),
|
|
(
|
|
GraphInstance(
|
|
np.array([1, 2], dtype=np.int),
|
|
np.array(
|
|
[
|
|
0,
|
|
],
|
|
dtype=int,
|
|
),
|
|
np.array([[0, 1]], dtype=int),
|
|
),
|
|
np.array([[0, 1], [2, 3]], dtype=np.float32),
|
|
),
|
|
(
|
|
GraphInstance(
|
|
nodes=np.array([[[0, 1], [2, 3]], [[4, 5], [6, 7]]], dtype=np.float32),
|
|
edges=np.array([0], dtype=int),
|
|
edge_links=np.array([[0, 1]]),
|
|
),
|
|
GraphInstance(
|
|
nodes=np.array(
|
|
[[[8, 9], [10, 11]], [[12, 13], [14, 15]]], dtype=np.float32
|
|
),
|
|
edges=np.array([1], dtype=int),
|
|
edge_links=np.array([[0, 1]]),
|
|
),
|
|
),
|
|
OrderedDict(
|
|
[
|
|
(
|
|
"a",
|
|
OrderedDict(
|
|
[
|
|
(
|
|
"a",
|
|
(
|
|
np.array([[0, 1], [2, 3]], dtype=np.float32),
|
|
np.array([[4, 5], [6, 7]], dtype=np.float32),
|
|
),
|
|
),
|
|
("b", np.array([[8, 9], [10, 11]], dtype=np.float32)),
|
|
]
|
|
),
|
|
),
|
|
(
|
|
"b",
|
|
(
|
|
np.array([12, 13], dtype=np.float32),
|
|
np.array([14, 15], dtype=np.float32),
|
|
),
|
|
),
|
|
]
|
|
),
|
|
OrderedDict(
|
|
[
|
|
(
|
|
"a",
|
|
OrderedDict(
|
|
[
|
|
(
|
|
"a",
|
|
GraphInstance(
|
|
np.array(
|
|
[[[1, 2], [3, 4]], [[5, 6], [7, 8]]],
|
|
dtype=np.float32,
|
|
),
|
|
None,
|
|
np.array([[0, 1]], dtype=int),
|
|
),
|
|
),
|
|
("b", np.array([[8, 9], [10, 11]], dtype=np.float32)),
|
|
]
|
|
),
|
|
),
|
|
(
|
|
"b",
|
|
(
|
|
np.array([12, 13], dtype=np.float32),
|
|
np.array([14, 15], dtype=np.float32),
|
|
),
|
|
),
|
|
]
|
|
),
|
|
]
|
|
|
|
|
|
expected_flattened_non_hom_samples = [
|
|
GraphInstance(
|
|
np.array([[1, 2, 3, 4], [5, 6, 7, 8]], dtype=np.float32),
|
|
np.array([[1, 0, 0, 0, 0]], dtype=int),
|
|
np.array([[0, 1]], dtype=int),
|
|
),
|
|
GraphInstance(
|
|
np.array([[1, 0, 0, 0, 0], [0, 1, 0, 0, 0]], dtype=int),
|
|
np.array([[1, 2, 3, 4]], dtype=np.float32),
|
|
np.array([[0, 1]], dtype=int),
|
|
),
|
|
GraphInstance(
|
|
np.array([[1, 0, 0, 0, 0], [0, 1, 0, 0, 0]], dtype=int),
|
|
None,
|
|
np.array([[0, 1]], dtype=int),
|
|
),
|
|
(
|
|
np.array([1, 0, 0, 0], dtype=int),
|
|
np.array([0, 1, 0, 0], dtype=int),
|
|
np.array([0, 0, 1, 0], dtype=int),
|
|
),
|
|
(
|
|
np.array([0, 1, 2, 3], dtype=np.float32),
|
|
np.array([4, 5, 6, 7], dtype=np.float32),
|
|
),
|
|
(
|
|
np.array([0, 1, 2, 3], dtype=np.float32),
|
|
np.array([4, 5, 6, 7], dtype=np.float32),
|
|
),
|
|
OrderedDict(
|
|
[
|
|
(
|
|
"a",
|
|
(
|
|
np.array([1, 0, 0, 0], dtype=int),
|
|
np.array([0, 1, 0, 0], dtype=int),
|
|
np.array([0, 0, 1, 0], dtype=int),
|
|
),
|
|
),
|
|
("b", np.array([0, 1, 2, 3], dtype=np.float32)),
|
|
]
|
|
),
|
|
OrderedDict(
|
|
[
|
|
(
|
|
"a",
|
|
GraphInstance(
|
|
np.array([[0, 1, 0, 0], [0, 0, 1, 0]], dtype=int),
|
|
np.array([[1, 0, 0, 0]], dtype=int),
|
|
np.array([[0, 1]], dtype=int),
|
|
),
|
|
),
|
|
("b", np.array([0, 1, 2, 3], dtype=np.float32)),
|
|
]
|
|
),
|
|
(
|
|
(
|
|
np.array([1, 0, 0, 0], dtype=int),
|
|
np.array([0, 1, 0, 0], dtype=int),
|
|
np.array([0, 0, 1, 0], dtype=int),
|
|
),
|
|
np.array([0, 1, 2, 3], dtype=np.float32),
|
|
),
|
|
(
|
|
GraphInstance(
|
|
np.array([[0, 1, 0, 0], [0, 0, 1, 0]], dtype=np.float32),
|
|
np.array([[1, 0, 0, 0]], dtype=int),
|
|
np.array([[0, 1]], dtype=int),
|
|
),
|
|
np.array([0, 1, 2, 3], dtype=np.float32),
|
|
),
|
|
(
|
|
GraphInstance(
|
|
np.array([[0, 1, 2, 3], [4, 5, 6, 7]], dtype=np.float32),
|
|
np.array([[1, 0, 0, 0]]),
|
|
np.array([[0, 1]]),
|
|
),
|
|
GraphInstance(
|
|
np.array([[8, 9, 10, 11], [12, 13, 14, 15]], dtype=np.float32),
|
|
np.array([[0, 1, 0, 0]]),
|
|
np.array([[0, 1]]),
|
|
),
|
|
),
|
|
OrderedDict(
|
|
[
|
|
(
|
|
"a",
|
|
OrderedDict(
|
|
[
|
|
(
|
|
"a",
|
|
(
|
|
np.array([0, 1, 2, 3], dtype=np.float32),
|
|
np.array([4, 5, 6, 7], dtype=np.float32),
|
|
),
|
|
),
|
|
("b", np.array([8, 9, 10, 11], dtype=np.float32)),
|
|
]
|
|
),
|
|
),
|
|
("b", (np.array([12, 13, 14, 15], dtype=np.float32))),
|
|
]
|
|
),
|
|
OrderedDict(
|
|
[
|
|
(
|
|
"a",
|
|
OrderedDict(
|
|
[
|
|
(
|
|
"a",
|
|
GraphInstance(
|
|
np.array(
|
|
[[1, 2, 3, 4], [5, 6, 7, 8]], dtype=np.float32
|
|
),
|
|
None,
|
|
np.array([[0, 1]], dtype=int),
|
|
),
|
|
),
|
|
("b", np.array([8, 9, 10, 11], dtype=np.float32)),
|
|
]
|
|
),
|
|
),
|
|
("b", (np.array([12, 13, 14, 15], dtype=np.float32))),
|
|
]
|
|
),
|
|
]
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
["space", "sample", "expected_flattened_sample"],
|
|
zip(
|
|
homogeneous_spaces + non_homogenous_spaces,
|
|
homogeneous_samples + non_homogenous_samples,
|
|
expected_flattened_hom_samples + expected_flattened_non_hom_samples,
|
|
),
|
|
)
|
|
def test_flatten(space, sample, expected_flattened_sample):
|
|
flattened_sample = utils.flatten(space, sample)
|
|
flat_space = utils.flatten_space(space)
|
|
|
|
assert sample in space
|
|
assert flattened_sample in flat_space
|
|
|
|
if space.is_np_flattenable:
|
|
assert isinstance(flattened_sample, np.ndarray)
|
|
assert flattened_sample.shape == expected_flattened_sample.shape
|
|
assert flattened_sample.dtype == expected_flattened_sample.dtype
|
|
assert np.all(flattened_sample == expected_flattened_sample)
|
|
else:
|
|
assert not isinstance(flattened_sample, np.ndarray)
|
|
assert compare_nested(flattened_sample, expected_flattened_sample)
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
["space", "flattened_sample", "expected_sample"],
|
|
zip(homogeneous_spaces, expected_flattened_hom_samples, homogeneous_samples),
|
|
)
|
|
def test_unflatten(space, flattened_sample, expected_sample):
|
|
sample = utils.unflatten(space, flattened_sample)
|
|
assert compare_nested(sample, expected_sample)
|
|
|
|
|
|
expected_flattened_spaces = [
|
|
Box(low=0, high=1, shape=(3,), dtype=np.int64),
|
|
Box(low=0.0, high=np.inf, shape=(4,), dtype=np.float32),
|
|
Box(low=0.0, high=np.inf, shape=(4,), dtype=np.float16),
|
|
Box(low=0, high=1, shape=(15,), dtype=np.int64),
|
|
Box(
|
|
low=np.array([0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], dtype=np.float64),
|
|
high=np.array([1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 5.0], dtype=np.float64),
|
|
dtype=np.float64,
|
|
),
|
|
Box(low=0, high=1, shape=(9,), dtype=np.int64),
|
|
Box(low=0, high=1, shape=(14,), dtype=np.int64),
|
|
Box(low=0, high=1, shape=(10,), dtype=np.int8),
|
|
Box(
|
|
low=np.array([0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], dtype=np.float64),
|
|
high=np.array([1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 5.0], dtype=np.float64),
|
|
dtype=np.float64,
|
|
),
|
|
Box(low=0, high=1, shape=(3,), dtype=np.int64),
|
|
Box(low=0, high=1, shape=(8,), dtype=np.int64),
|
|
]
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
["space", "expected_flattened_space"],
|
|
zip(homogeneous_spaces, expected_flattened_spaces),
|
|
)
|
|
def test_flatten_space(space, expected_flattened_space):
|
|
flattened_space = utils.flatten_space(space)
|
|
assert flattened_space == expected_flattened_space
|