mirror of
https://github.com/Farama-Foundation/Gymnasium.git
synced 2025-08-16 11:39:13 +00:00
* Delete prng.py Since it seems like this seeding function is rarely used. * Update __init__.py * Update kellycoinflip.py * Update core.py * Update box.py * Update discrete.py * Update multi_binary.py * Update multi_discrete.py * Update test_determinism.py * Update test_determinism.py * Update test_determinism.py * Update core.py * Update box.py * Update test_determinism.py * Update core.py * Update box.py * Update discrete.py * Update multi_binary.py * Update multi_discrete.py * Update dict_space.py * Update tuple_space.py * Update core.py * Create space.py * Update __init__.py * Update __init__.py * Update box.py * Update dict_space.py * Update discrete.py * Update dict_space.py * Update multi_binary.py * Update multi_discrete.py * Update tuple_space.py * Update discrete.py * Update box.py * Update dict_space.py * Update multi_binary.py * Update multi_discrete.py * Update tuple_space.py * Update multi_discrete.py * Update multi_binary.py * Update dict_space.py * Update box.py * Update test_determinism.py * Update kellycoinflip.py * Update space.py
43 lines
1.3 KiB
Python
43 lines
1.3 KiB
Python
import numpy as np
|
|
|
|
|
|
class Space(object):
|
|
"""Defines the observation and action spaces, so you can write generic
|
|
code that applies to any Env. For example, you can choose a random
|
|
action.
|
|
"""
|
|
def __init__(self, shape=None, dtype=None):
|
|
import numpy as np # takes about 300-400ms to import, so we load lazily
|
|
self.shape = None if shape is None else tuple(shape)
|
|
self.dtype = None if dtype is None else np.dtype(dtype)
|
|
|
|
def sample(self):
|
|
"""
|
|
Uniformly randomly sample a random element of this space
|
|
"""
|
|
raise NotImplementedError
|
|
|
|
def seed(self, seed):
|
|
"""Set the seed for this space's pseudo-random number generator. """
|
|
raise NotImplementedError
|
|
|
|
def contains(self, x):
|
|
"""
|
|
Return boolean specifying if x is a valid
|
|
member of this space
|
|
"""
|
|
raise NotImplementedError
|
|
|
|
def __contains__(self, x):
|
|
return self.contains(x)
|
|
|
|
def to_jsonable(self, sample_n):
|
|
"""Convert a batch of samples from this space to a JSONable data type."""
|
|
# By default, assume identity is JSONable
|
|
return sample_n
|
|
|
|
def from_jsonable(self, sample_n):
|
|
"""Convert a JSONable data type to a batch of samples from this space."""
|
|
# By default, assume identity is JSONable
|
|
return sample_n
|