Files
Gymnasium/gym/spaces/space.py
Xingdong Zuo 6497c9f1c6 Delete prng.py (#1196)
* Delete prng.py

Since it seems like this seeding function is rarely used.

* Update __init__.py

* Update kellycoinflip.py

* Update core.py

* Update box.py

* Update discrete.py

* Update multi_binary.py

* Update multi_discrete.py

* Update test_determinism.py

* Update test_determinism.py

* Update test_determinism.py

* Update core.py

* Update box.py

* Update test_determinism.py

* Update core.py

* Update box.py

* Update discrete.py

* Update multi_binary.py

* Update multi_discrete.py

* Update dict_space.py

* Update tuple_space.py

* Update core.py

* Create space.py

* Update __init__.py

* Update __init__.py

* Update box.py

* Update dict_space.py

* Update discrete.py

* Update dict_space.py

* Update multi_binary.py

* Update multi_discrete.py

* Update tuple_space.py

* Update discrete.py

* Update box.py

* Update dict_space.py

* Update multi_binary.py

* Update multi_discrete.py

* Update tuple_space.py

* Update multi_discrete.py

* Update multi_binary.py

* Update dict_space.py

* Update box.py

* Update test_determinism.py

* Update kellycoinflip.py

* Update space.py
2019-01-30 13:39:55 -08:00

43 lines
1.3 KiB
Python

import numpy as np
class Space(object):
"""Defines the observation and action spaces, so you can write generic
code that applies to any Env. For example, you can choose a random
action.
"""
def __init__(self, shape=None, dtype=None):
import numpy as np # takes about 300-400ms to import, so we load lazily
self.shape = None if shape is None else tuple(shape)
self.dtype = None if dtype is None else np.dtype(dtype)
def sample(self):
"""
Uniformly randomly sample a random element of this space
"""
raise NotImplementedError
def seed(self, seed):
"""Set the seed for this space's pseudo-random number generator. """
raise NotImplementedError
def contains(self, x):
"""
Return boolean specifying if x is a valid
member of this space
"""
raise NotImplementedError
def __contains__(self, x):
return self.contains(x)
def to_jsonable(self, sample_n):
"""Convert a batch of samples from this space to a JSONable data type."""
# By default, assume identity is JSONable
return sample_n
def from_jsonable(self, sample_n):
"""Convert a JSONable data type to a batch of samples from this space."""
# By default, assume identity is JSONable
return sample_n