Files
Gymnasium/gym/envs/debugging/one_round_deterministic_reward.py
2016-06-16 01:17:37 -07:00

38 lines
898 B
Python

"""
Simple environment with known optimal policy and value function.
This environment has just two actions.
Action 0 yields 0 reward and then terminates the session.
Action 1 yields 1 reward and then terminates the session.
Optimal policy: action 1.
Optimal value function: v(0)=1 (there is only one state, state 0)
"""
import gym
import random
from gym import spaces
class OneRoundDeterministicRewardEnv(gym.Env):
def __init__(self):
self.action_space = spaces.Discrete(2)
self.observation_space = spaces.Discrete(1)
self._reset()
def _step(self, action):
assert self.action_space.contains(action)
if action:
reward = 1
else:
reward = 0
done = True
return self._get_obs(), reward, done, {}
def _get_obs(self):
return 0
def _reset(self):
return self._get_obs()