mirror of
https://github.com/Farama-Foundation/Gymnasium.git
synced 2025-08-01 14:10:30 +00:00
* Fix issues with pygame event handling * Fix display initialization and exit for jupyter
248 lines
8.8 KiB
Python
248 lines
8.8 KiB
Python
"""
|
|
http://incompleteideas.net/MountainCar/MountainCar1.cp
|
|
permalink: https://perma.cc/6Z2N-PFWC
|
|
"""
|
|
import math
|
|
from typing import Optional
|
|
|
|
import numpy as np
|
|
import pygame
|
|
from pygame import gfxdraw
|
|
|
|
import gym
|
|
from gym import spaces
|
|
from gym.utils import seeding
|
|
|
|
|
|
class MountainCarEnv(gym.Env):
|
|
"""
|
|
### Description
|
|
|
|
The Mountain Car MDP is a deterministic MDP that consists of a car placed stochastically
|
|
at the bottom of a sinusoidal valley, with the only possible actions being the accelerations
|
|
that can be applied to the car in either direction. The goal of the MDP is to strategically
|
|
accelerate the car to reach the goal state on top of the right hill. There are two versions
|
|
of the mountain car domain in gym: one with discrete actions and one with continuous.
|
|
This version is the one with discrete actions.
|
|
|
|
This MDP first appeared in [Andrew Moore's PhD Thesis (1990)](https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-209.pdf)
|
|
|
|
```
|
|
@TECHREPORT{Moore90efficientmemory-based,
|
|
author = {Andrew William Moore},
|
|
title = {Efficient Memory-based Learning for Robot Control},
|
|
institution = {University of Cambridge},
|
|
year = {1990}
|
|
}
|
|
```
|
|
|
|
### Observation Space
|
|
|
|
The observation is a `ndarray` with shape `(2,)` where the elements correspond to the following:
|
|
|
|
| Num | Observation | Min | Max | Unit |
|
|
|-----|-------------------------------------------------------------|--------------------|--------|------|
|
|
| 0 | position of the car along the x-axis | -Inf | Inf | position (m) |
|
|
| 1 | velocity of the car | -Inf | Inf | position (m) |
|
|
|
|
### Action Space
|
|
|
|
There are 3 discrete deterministic actions:
|
|
|
|
| Num | Observation | Value | Unit |
|
|
|-----|-------------------------------------------------------------|---------|------|
|
|
| 0 | Accelerate to the left | Inf | position (m) |
|
|
| 1 | Don't accelerate | Inf | position (m) |
|
|
| 2 | Accelerate to the right | Inf | position (m) |
|
|
|
|
### Transition Dynamics:
|
|
|
|
Given an action, the mountain car follows the following transition dynamics:
|
|
|
|
*velocity<sub>t+1</sub> = velocity<sub>t</sub> + (action - 1) * force - cos(3 * position<sub>t</sub>) * gravity*
|
|
|
|
*position<sub>t+1</sub> = position<sub>t</sub> + velocity<sub>t+1</sub>*
|
|
|
|
where force = 0.001 and gravity = 0.0025. The collisions at either end are inelastic with the velocity set to 0 upon collision with the wall. The position is clipped to the range `[-1.2, 0.6]` and velocity is clipped to the range `[-0.07, 0.07]`.
|
|
|
|
|
|
### Reward:
|
|
|
|
The goal is to reach the flag placed on top of the right hill as quickly as possible, as such the agent is penalised with a reward of -1 for each timestep it isn't at the goal and is not penalised (reward = 0) for when it reaches the goal.
|
|
|
|
### Starting State
|
|
|
|
The position of the car is assigned a uniform random value in *[-0.6 , -0.4]*. The starting velocity of the car is always assigned to 0.
|
|
|
|
### Episode Termination
|
|
|
|
The episode terminates if either of the following happens:
|
|
1. The position of the car is greater than or equal to 0.5 (the goal position on top of the right hill)
|
|
2. The length of the episode is 200.
|
|
|
|
|
|
### Arguments
|
|
|
|
```
|
|
gym.make('MountainCar-v0')
|
|
```
|
|
|
|
### Version History
|
|
|
|
* v0: Initial versions release (1.0.0)
|
|
"""
|
|
|
|
metadata = {"render_modes": ["human", "rgb_array"], "render_fps": 30}
|
|
|
|
def __init__(self, goal_velocity=0):
|
|
self.min_position = -1.2
|
|
self.max_position = 0.6
|
|
self.max_speed = 0.07
|
|
self.goal_position = 0.5
|
|
self.goal_velocity = goal_velocity
|
|
|
|
self.force = 0.001
|
|
self.gravity = 0.0025
|
|
|
|
self.low = np.array([self.min_position, -self.max_speed], dtype=np.float32)
|
|
self.high = np.array([self.max_position, self.max_speed], dtype=np.float32)
|
|
|
|
self.screen = None
|
|
self.clock = None
|
|
self.isopen = True
|
|
|
|
self.action_space = spaces.Discrete(3)
|
|
self.observation_space = spaces.Box(self.low, self.high, dtype=np.float32)
|
|
|
|
def step(self, action):
|
|
assert self.action_space.contains(
|
|
action
|
|
), f"{action!r} ({type(action)}) invalid"
|
|
|
|
position, velocity = self.state
|
|
velocity += (action - 1) * self.force + math.cos(3 * position) * (-self.gravity)
|
|
velocity = np.clip(velocity, -self.max_speed, self.max_speed)
|
|
position += velocity
|
|
position = np.clip(position, self.min_position, self.max_position)
|
|
if position == self.min_position and velocity < 0:
|
|
velocity = 0
|
|
|
|
done = bool(position >= self.goal_position and velocity >= self.goal_velocity)
|
|
reward = -1.0
|
|
|
|
self.state = (position, velocity)
|
|
return np.array(self.state, dtype=np.float32), reward, done, {}
|
|
|
|
def reset(
|
|
self,
|
|
*,
|
|
seed: Optional[int] = None,
|
|
return_info: bool = False,
|
|
options: Optional[dict] = None,
|
|
):
|
|
super().reset(seed=seed)
|
|
self.state = np.array([self.np_random.uniform(low=-0.6, high=-0.4), 0])
|
|
if not return_info:
|
|
return np.array(self.state, dtype=np.float32)
|
|
else:
|
|
return np.array(self.state, dtype=np.float32), {}
|
|
|
|
def _height(self, xs):
|
|
return np.sin(3 * xs) * 0.45 + 0.55
|
|
|
|
def render(self, mode="human"):
|
|
screen_width = 600
|
|
screen_height = 400
|
|
|
|
world_width = self.max_position - self.min_position
|
|
scale = screen_width / world_width
|
|
carwidth = 40
|
|
carheight = 20
|
|
if self.screen is None:
|
|
pygame.init()
|
|
pygame.display.init()
|
|
self.screen = pygame.display.set_mode((screen_width, screen_height))
|
|
if self.clock is None:
|
|
self.clock = pygame.time.Clock()
|
|
|
|
self.surf = pygame.Surface((screen_width, screen_height))
|
|
self.surf.fill((255, 255, 255))
|
|
|
|
pos = self.state[0]
|
|
|
|
xs = np.linspace(self.min_position, self.max_position, 100)
|
|
ys = self._height(xs)
|
|
xys = list(zip((xs - self.min_position) * scale, ys * scale))
|
|
|
|
pygame.draw.aalines(self.surf, points=xys, closed=False, color=(0, 0, 0))
|
|
|
|
clearance = 10
|
|
|
|
l, r, t, b = -carwidth / 2, carwidth / 2, carheight, 0
|
|
coords = []
|
|
for c in [(l, b), (l, t), (r, t), (r, b)]:
|
|
c = pygame.math.Vector2(c).rotate_rad(math.cos(3 * pos))
|
|
coords.append(
|
|
(
|
|
c[0] + (pos - self.min_position) * scale,
|
|
c[1] + clearance + self._height(pos) * scale,
|
|
)
|
|
)
|
|
|
|
gfxdraw.aapolygon(self.surf, coords, (0, 0, 0))
|
|
gfxdraw.filled_polygon(self.surf, coords, (0, 0, 0))
|
|
|
|
for c in [(carwidth / 4, 0), (-carwidth / 4, 0)]:
|
|
c = pygame.math.Vector2(c).rotate_rad(math.cos(3 * pos))
|
|
wheel = (
|
|
int(c[0] + (pos - self.min_position) * scale),
|
|
int(c[1] + clearance + self._height(pos) * scale),
|
|
)
|
|
|
|
gfxdraw.aacircle(
|
|
self.surf, wheel[0], wheel[1], int(carheight / 2.5), (128, 128, 128)
|
|
)
|
|
gfxdraw.filled_circle(
|
|
self.surf, wheel[0], wheel[1], int(carheight / 2.5), (128, 128, 128)
|
|
)
|
|
|
|
flagx = int((self.goal_position - self.min_position) * scale)
|
|
flagy1 = int(self._height(self.goal_position) * scale)
|
|
flagy2 = flagy1 + 50
|
|
gfxdraw.vline(self.surf, flagx, flagy1, flagy2, (0, 0, 0))
|
|
|
|
gfxdraw.aapolygon(
|
|
self.surf,
|
|
[(flagx, flagy2), (flagx, flagy2 - 10), (flagx + 25, flagy2 - 5)],
|
|
(204, 204, 0),
|
|
)
|
|
gfxdraw.filled_polygon(
|
|
self.surf,
|
|
[(flagx, flagy2), (flagx, flagy2 - 10), (flagx + 25, flagy2 - 5)],
|
|
(204, 204, 0),
|
|
)
|
|
|
|
self.surf = pygame.transform.flip(self.surf, False, True)
|
|
self.screen.blit(self.surf, (0, 0))
|
|
if mode == "human":
|
|
pygame.event.pump()
|
|
self.clock.tick(self.metadata["render_fps"])
|
|
pygame.display.flip()
|
|
|
|
if mode == "rgb_array":
|
|
return np.transpose(
|
|
np.array(pygame.surfarray.pixels3d(self.screen)), axes=(1, 0, 2)
|
|
)
|
|
else:
|
|
return self.isopen
|
|
|
|
def get_keys_to_action(self):
|
|
# Control with left and right arrow keys.
|
|
return {(): 1, (276,): 0, (275,): 2, (275, 276): 1}
|
|
|
|
def close(self):
|
|
if self.screen is not None:
|
|
pygame.display.quit()
|
|
pygame.quit()
|
|
self.isopen = False
|