mirror of
https://github.com/Farama-Foundation/Gymnasium.git
synced 2025-08-01 22:11:25 +00:00
* Fix issues with pygame event handling * Fix display initialization and exit for jupyter
375 lines
13 KiB
Python
375 lines
13 KiB
Python
from contextlib import closing
|
|
from io import StringIO
|
|
from os import path
|
|
from typing import Optional
|
|
import pygame
|
|
from pygame.constants import SRCALPHA
|
|
import numpy as np
|
|
|
|
from gym import Env, spaces, utils
|
|
from gym.envs.toy_text.utils import categorical_sample
|
|
|
|
LEFT = 0
|
|
DOWN = 1
|
|
RIGHT = 2
|
|
UP = 3
|
|
|
|
MAPS = {
|
|
"4x4": ["SFFF", "FHFH", "FFFH", "HFFG"],
|
|
"8x8": [
|
|
"SFFFFFFF",
|
|
"FFFFFFFF",
|
|
"FFFHFFFF",
|
|
"FFFFFHFF",
|
|
"FFFHFFFF",
|
|
"FHHFFFHF",
|
|
"FHFFHFHF",
|
|
"FFFHFFFG",
|
|
],
|
|
}
|
|
|
|
|
|
def generate_random_map(size=8, p=0.8):
|
|
"""Generates a random valid map (one that has a path from start to goal)
|
|
:param size: size of each side of the grid
|
|
:param p: probability that a tile is frozen
|
|
"""
|
|
valid = False
|
|
|
|
# DFS to check that it's a valid path.
|
|
def is_valid(res):
|
|
frontier, discovered = [], set()
|
|
frontier.append((0, 0))
|
|
while frontier:
|
|
r, c = frontier.pop()
|
|
if not (r, c) in discovered:
|
|
discovered.add((r, c))
|
|
directions = [(1, 0), (0, 1), (-1, 0), (0, -1)]
|
|
for x, y in directions:
|
|
r_new = r + x
|
|
c_new = c + y
|
|
if r_new < 0 or r_new >= size or c_new < 0 or c_new >= size:
|
|
continue
|
|
if res[r_new][c_new] == "G":
|
|
return True
|
|
if res[r_new][c_new] != "H":
|
|
frontier.append((r_new, c_new))
|
|
return False
|
|
|
|
while not valid:
|
|
p = min(1, p)
|
|
res = np.random.choice(["F", "H"], (size, size), p=[p, 1 - p])
|
|
res[0][0] = "S"
|
|
res[-1][-1] = "G"
|
|
valid = is_valid(res)
|
|
return ["".join(x) for x in res]
|
|
|
|
|
|
class FrozenLakeEnv(Env):
|
|
"""
|
|
Frozen lake involves crossing a frozen lake from Start(S) to Goal(G) without falling into any Holes(H) by walking over
|
|
the Frozen(F) lake. The agent may not always move in the intended direction due to the slippery nature of the frozen lake.
|
|
|
|
|
|
### Action Space
|
|
The agent takes a 1-element vector for actions.
|
|
The action space is `(dir)`, where `dir` decides direction to move in which can be:
|
|
|
|
- 0: LEFT
|
|
- 1: DOWN
|
|
- 2: RIGHT
|
|
- 3: UP
|
|
|
|
### Observation Space
|
|
The observation is a value representing the agent's current position as
|
|
current_row * nrows + current_col (where both the row and col start at 0).
|
|
For example, the goal position in the 4x4 map can be calculated as follows: 3 * 4 + 3 = 15.
|
|
The number of possible observations is dependent on the size of the map.
|
|
For example, the 4x4 map has 16 possible observations.
|
|
|
|
### Rewards
|
|
|
|
Reward schedule:
|
|
- Reach goal(G): +1
|
|
- Reach hole(H): 0
|
|
- Reach frozen(F): 0
|
|
|
|
### Arguments
|
|
|
|
```
|
|
gym.make('FrozenLake-v1', desc=None,map_name="4x4", is_slippery=True)
|
|
```
|
|
|
|
`desc`: Used to specify custom map for frozen lake. For example,
|
|
|
|
desc=["SFFF", "FHFH", "FFFH", "HFFG"].
|
|
|
|
`map_name`: ID to use any of the preloaded maps.
|
|
|
|
"4x4":[
|
|
"SFFF",
|
|
"FHFH",
|
|
"FFFH",
|
|
"HFFG"
|
|
]
|
|
|
|
"8x8": [
|
|
"SFFFFFFF",
|
|
"FFFFFFFF",
|
|
"FFFHFFFF",
|
|
"FFFFFHFF",
|
|
"FFFHFFFF",
|
|
"FHHFFFHF",
|
|
"FHFFHFHF",
|
|
"FFFHFFFG",
|
|
]
|
|
|
|
`is_slippery`: True/False. If True will move in intended direction with
|
|
probability of 1/3 else will move in either perpendicular direction with
|
|
equal probability of 1/3 in both directions.
|
|
|
|
For example, if action is left and is_slippery is True, then:
|
|
- P(move left)=1/3
|
|
- P(move up)=1/3
|
|
- P(move down)=1/3
|
|
|
|
### Version History
|
|
* v1: Bug fixes to rewards
|
|
* v0: Initial versions release (1.0.0)
|
|
"""
|
|
|
|
metadata = {"render_modes": ["human", "ansi", "rgb_array"], "render_fps": 4}
|
|
|
|
def __init__(self, desc=None, map_name="4x4", is_slippery=True):
|
|
if desc is None and map_name is None:
|
|
desc = generate_random_map()
|
|
elif desc is None:
|
|
desc = MAPS[map_name]
|
|
self.desc = desc = np.asarray(desc, dtype="c")
|
|
self.nrow, self.ncol = nrow, ncol = desc.shape
|
|
self.reward_range = (0, 1)
|
|
|
|
nA = 4
|
|
nS = nrow * ncol
|
|
|
|
self.initial_state_distrib = np.array(desc == b"S").astype("float64").ravel()
|
|
self.initial_state_distrib /= self.initial_state_distrib.sum()
|
|
|
|
self.P = {s: {a: [] for a in range(nA)} for s in range(nS)}
|
|
|
|
def to_s(row, col):
|
|
return row * ncol + col
|
|
|
|
def inc(row, col, a):
|
|
if a == LEFT:
|
|
col = max(col - 1, 0)
|
|
elif a == DOWN:
|
|
row = min(row + 1, nrow - 1)
|
|
elif a == RIGHT:
|
|
col = min(col + 1, ncol - 1)
|
|
elif a == UP:
|
|
row = max(row - 1, 0)
|
|
return (row, col)
|
|
|
|
def update_probability_matrix(row, col, action):
|
|
newrow, newcol = inc(row, col, action)
|
|
newstate = to_s(newrow, newcol)
|
|
newletter = desc[newrow, newcol]
|
|
done = bytes(newletter) in b"GH"
|
|
reward = float(newletter == b"G")
|
|
return newstate, reward, done
|
|
|
|
for row in range(nrow):
|
|
for col in range(ncol):
|
|
s = to_s(row, col)
|
|
for a in range(4):
|
|
li = self.P[s][a]
|
|
letter = desc[row, col]
|
|
if letter in b"GH":
|
|
li.append((1.0, s, 0, True))
|
|
else:
|
|
if is_slippery:
|
|
for b in [(a - 1) % 4, a, (a + 1) % 4]:
|
|
li.append(
|
|
(1.0 / 3.0, *update_probability_matrix(row, col, b))
|
|
)
|
|
else:
|
|
li.append((1.0, *update_probability_matrix(row, col, a)))
|
|
|
|
self.observation_space = spaces.Discrete(nS)
|
|
self.action_space = spaces.Discrete(nA)
|
|
|
|
# pygame utils
|
|
self.window_size = (min(64 * ncol, 512), min(64 * nrow, 512))
|
|
self.window_surface = None
|
|
self.clock = None
|
|
self.hole_img = None
|
|
self.cracked_hole_img = None
|
|
self.ice_img = None
|
|
self.elf_images = None
|
|
self.goal_img = None
|
|
self.start_img = None
|
|
|
|
def step(self, a):
|
|
transitions = self.P[self.s][a]
|
|
i = categorical_sample([t[0] for t in transitions], self.np_random)
|
|
p, s, r, d = transitions[i]
|
|
self.s = s
|
|
self.lastaction = a
|
|
return (int(s), r, d, {"prob": p})
|
|
|
|
def reset(
|
|
self,
|
|
*,
|
|
seed: Optional[int] = None,
|
|
return_info: bool = False,
|
|
options: Optional[dict] = None,
|
|
):
|
|
super().reset(seed=seed)
|
|
self.s = categorical_sample(self.initial_state_distrib, self.np_random)
|
|
self.lastaction = None
|
|
|
|
if not return_info:
|
|
return int(self.s)
|
|
else:
|
|
return int(self.s), {"prob": 1}
|
|
|
|
def render(self, mode="human"):
|
|
desc = self.desc.tolist()
|
|
if mode == "ansi":
|
|
return self._render_text(desc)
|
|
else:
|
|
return self._render_gui(desc, mode)
|
|
|
|
def _render_gui(self, desc, mode):
|
|
if self.window_surface is None:
|
|
pygame.init()
|
|
pygame.display.init()
|
|
pygame.display.set_caption("Frozen Lake")
|
|
if mode == "human":
|
|
self.window_surface = pygame.display.set_mode(self.window_size)
|
|
else: # rgb_array
|
|
self.window_surface = pygame.Surface(self.window_size)
|
|
if self.clock is None:
|
|
self.clock = pygame.time.Clock()
|
|
if self.hole_img is None:
|
|
file_name = path.join(path.dirname(__file__), "img/hole.png")
|
|
self.hole_img = pygame.image.load(file_name)
|
|
if self.cracked_hole_img is None:
|
|
file_name = path.join(path.dirname(__file__), "img/cracked_hole.png")
|
|
self.cracked_hole_img = pygame.image.load(file_name)
|
|
if self.ice_img is None:
|
|
file_name = path.join(path.dirname(__file__), "img/ice.png")
|
|
self.ice_img = pygame.image.load(file_name)
|
|
if self.goal_img is None:
|
|
file_name = path.join(path.dirname(__file__), "img/goal.png")
|
|
self.goal_img = pygame.image.load(file_name)
|
|
if self.start_img is None:
|
|
file_name = path.join(path.dirname(__file__), "img/stool.png")
|
|
self.start_img = pygame.image.load(file_name)
|
|
if self.elf_images is None:
|
|
elfs = [
|
|
path.join(path.dirname(__file__), "img/elf_left.png"),
|
|
path.join(path.dirname(__file__), "img/elf_down.png"),
|
|
path.join(path.dirname(__file__), "img/elf_right.png"),
|
|
path.join(path.dirname(__file__), "img/elf_up.png"),
|
|
]
|
|
self.elf_images = [pygame.image.load(f_name) for f_name in elfs]
|
|
|
|
board = pygame.Surface(self.window_size, flags=SRCALPHA)
|
|
cell_width = self.window_size[0] // self.ncol
|
|
cell_height = self.window_size[1] // self.nrow
|
|
smaller_cell_scale = 0.6
|
|
small_cell_w = smaller_cell_scale * cell_width
|
|
small_cell_h = smaller_cell_scale * cell_height
|
|
|
|
# prepare images
|
|
last_action = self.lastaction if self.lastaction is not None else 1
|
|
elf_img = self.elf_images[last_action]
|
|
elf_scale = min(
|
|
small_cell_w / elf_img.get_width(),
|
|
small_cell_h / elf_img.get_height(),
|
|
)
|
|
elf_dims = (
|
|
elf_img.get_width() * elf_scale,
|
|
elf_img.get_height() * elf_scale,
|
|
)
|
|
elf_img = pygame.transform.scale(elf_img, elf_dims)
|
|
hole_img = pygame.transform.scale(self.hole_img, (cell_width, cell_height))
|
|
cracked_hole_img = pygame.transform.scale(
|
|
self.cracked_hole_img, (cell_width, cell_height)
|
|
)
|
|
ice_img = pygame.transform.scale(self.ice_img, (cell_width, cell_height))
|
|
goal_img = pygame.transform.scale(self.goal_img, (cell_width, cell_height))
|
|
start_img = pygame.transform.scale(self.start_img, (small_cell_w, small_cell_h))
|
|
|
|
for y in range(self.nrow):
|
|
for x in range(self.ncol):
|
|
rect = (x * cell_width, y * cell_height, cell_width, cell_height)
|
|
if desc[y][x] == b"H":
|
|
self.window_surface.blit(hole_img, (rect[0], rect[1]))
|
|
elif desc[y][x] == b"G":
|
|
self.window_surface.blit(ice_img, (rect[0], rect[1]))
|
|
goal_rect = self._center_small_rect(rect, goal_img.get_size())
|
|
self.window_surface.blit(goal_img, goal_rect)
|
|
elif desc[y][x] == b"S":
|
|
self.window_surface.blit(ice_img, (rect[0], rect[1]))
|
|
stool_rect = self._center_small_rect(rect, start_img.get_size())
|
|
self.window_surface.blit(start_img, stool_rect)
|
|
else:
|
|
self.window_surface.blit(ice_img, (rect[0], rect[1]))
|
|
|
|
pygame.draw.rect(board, (180, 200, 230), rect, 1)
|
|
|
|
# paint the elf
|
|
bot_row, bot_col = self.s // self.ncol, self.s % self.ncol
|
|
cell_rect = (
|
|
bot_col * cell_width,
|
|
bot_row * cell_height,
|
|
cell_width,
|
|
cell_height,
|
|
)
|
|
if desc[bot_row][bot_col] == b"H":
|
|
self.window_surface.blit(cracked_hole_img, (cell_rect[0], cell_rect[1]))
|
|
else:
|
|
elf_rect = self._center_small_rect(cell_rect, elf_img.get_size())
|
|
self.window_surface.blit(elf_img, elf_rect)
|
|
|
|
self.window_surface.blit(board, board.get_rect())
|
|
if mode == "human":
|
|
pygame.event.pump()
|
|
pygame.display.update()
|
|
self.clock.tick(self.metadata["render_fps"])
|
|
else: # rgb_array
|
|
return np.transpose(
|
|
np.array(pygame.surfarray.pixels3d(self.window_surface)), axes=(1, 0, 2)
|
|
)
|
|
|
|
@staticmethod
|
|
def _center_small_rect(big_rect, small_dims):
|
|
offset_w = (big_rect[2] - small_dims[0]) / 2
|
|
offset_h = (big_rect[3] - small_dims[1]) / 2
|
|
return (
|
|
big_rect[0] + offset_w,
|
|
big_rect[1] + offset_h,
|
|
)
|
|
|
|
def _render_text(self, desc):
|
|
outfile = StringIO()
|
|
|
|
row, col = self.s // self.ncol, self.s % self.ncol
|
|
desc = [[c.decode("utf-8") for c in line] for line in desc]
|
|
desc[row][col] = utils.colorize(desc[row][col], "red", highlight=True)
|
|
if self.lastaction is not None:
|
|
outfile.write(f" ({['Left', 'Down', 'Right', 'Up'][self.lastaction]})\n")
|
|
else:
|
|
outfile.write("\n")
|
|
outfile.write("\n".join("".join(line) for line in desc) + "\n")
|
|
|
|
with closing(outfile):
|
|
return outfile.getvalue()
|
|
|
|
|
|
# Elf and stool from https://franuka.itch.io/rpg-snow-tileset
|
|
# All other assets by Mel Sawyer
|