Files
Gymnasium/gym/envs/tests/test_envs.py
2021-07-29 15:39:42 -04:00

70 lines
2.1 KiB
Python

import pytest
import numpy as np
from gym import envs
from gym.envs.tests.spec_list import spec_list
# This runs a smoketest on each official registered env. We may want
# to try also running environments which are not officially registered
# envs.
@pytest.mark.parametrize("spec", spec_list)
def test_env(spec):
# Capture warnings
with pytest.warns(None) as warnings:
env = spec.make()
# Check that dtype is explicitly declared for gym.Box spaces
for warning_msg in warnings:
assert "autodetected dtype" not in str(warning_msg.message)
ob_space = env.observation_space
act_space = env.action_space
ob = env.reset()
assert ob_space.contains(ob), "Reset observation: {!r} not in space".format(ob)
a = act_space.sample()
observation, reward, done, _info = env.step(a)
assert ob_space.contains(observation), "Step observation: {!r} not in space".format(
observation
)
assert np.isscalar(reward), "{} is not a scalar for {}".format(reward, env)
assert isinstance(done, bool), "Expected {} to be a boolean".format(done)
for mode in env.metadata.get("render.modes", []):
env.render(mode=mode)
# Make sure we can render the environment after close.
for mode in env.metadata.get("render.modes", []):
env.render(mode=mode)
env.close()
# Run a longer rollout on some environments
def test_random_rollout():
for env in [envs.make("CartPole-v0"), envs.make("FrozenLake-v0")]:
agent = lambda ob: env.action_space.sample()
ob = env.reset()
for _ in range(10):
assert env.observation_space.contains(ob)
a = agent(ob)
assert env.action_space.contains(a)
(ob, _reward, done, _info) = env.step(a)
if done:
break
env.close()
def test_env_render_result_is_immutable():
environs = [
envs.make("Taxi-v3"),
envs.make("FrozenLake-v0"),
envs.make("Reverse-v0"),
]
for env in environs:
env.reset()
output = env.render(mode="ansi")
assert isinstance(output, str)
env.close()