mirror of
https://github.com/Farama-Foundation/Gymnasium.git
synced 2025-07-31 13:54:31 +00:00
84 lines
2.8 KiB
Python
84 lines
2.8 KiB
Python
import jax.numpy as jnp
|
|
import numpy as np
|
|
import pytest
|
|
|
|
from gymnasium.experimental.wrappers import JaxToNumpyV0
|
|
from gymnasium.experimental.wrappers.numpy_to_jax import jax_to_numpy, numpy_to_jax
|
|
from gymnasium.utils.env_checker import data_equivalence
|
|
from tests.testing_env import GenericTestEnv
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"value, expected_value",
|
|
[
|
|
(1.0, np.array(1.0)),
|
|
(2, np.array(2)),
|
|
((3.0, 4), (np.array(3.0), np.array(4))),
|
|
([3.0, 4], [np.array(3.0), np.array(4)]),
|
|
(
|
|
{
|
|
"a": 6.0,
|
|
"b": 7,
|
|
},
|
|
{"a": np.array(6.0), "b": np.array(7)},
|
|
),
|
|
(np.array(1.0), np.array(1.0)),
|
|
(np.array([1, 2]), np.array([1, 2])),
|
|
(np.array([[1.0], [2.0]]), np.array([[1.0], [2.0]])),
|
|
(
|
|
{"a": (1, np.array(2.0), np.array([3, 4])), "b": {"c": 5}},
|
|
{
|
|
"a": (np.array(1), np.array(2.0), np.array([3, 4])),
|
|
"b": {"c": np.array(5)},
|
|
},
|
|
),
|
|
],
|
|
)
|
|
def test_roundtripping(value, expected_value):
|
|
"""We test numpy -> jax -> numpy as this is direction in the NumpyToJax wrapper."""
|
|
assert data_equivalence(jax_to_numpy(numpy_to_jax(value)), expected_value)
|
|
|
|
|
|
def jax_reset_func(self, seed=None, options=None):
|
|
return jnp.array([1.0, 2.0, 3.0]), {"data": jnp.array([1, 2, 3])}
|
|
|
|
|
|
def jax_step_func(self, action):
|
|
assert isinstance(action, jnp.DeviceArray), type(action)
|
|
return (
|
|
jnp.array([1, 2, 3]),
|
|
jnp.array(5.0),
|
|
jnp.array(True),
|
|
jnp.array(False),
|
|
{"data": jnp.array([1.0, 2.0])},
|
|
)
|
|
|
|
|
|
def test_jax_to_numpy():
|
|
jax_env = GenericTestEnv(reset_func=jax_reset_func, step_func=jax_step_func)
|
|
|
|
# Check that the reset and step for jax environment are as expected
|
|
obs, info = jax_env.reset()
|
|
assert isinstance(obs, jnp.DeviceArray)
|
|
assert isinstance(info, dict) and isinstance(info["data"], jnp.DeviceArray)
|
|
|
|
obs, reward, terminated, truncated, info = jax_env.step(jnp.array([1, 2]))
|
|
assert isinstance(obs, jnp.DeviceArray)
|
|
assert isinstance(reward, jnp.DeviceArray)
|
|
assert isinstance(terminated, jnp.DeviceArray) and isinstance(
|
|
truncated, jnp.DeviceArray
|
|
)
|
|
assert isinstance(info, dict) and isinstance(info["data"], jnp.DeviceArray)
|
|
|
|
# Check that the wrapped version is correct.
|
|
numpy_env = JaxToNumpyV0(jax_env)
|
|
obs, info = numpy_env.reset()
|
|
assert isinstance(obs, np.ndarray)
|
|
assert isinstance(info, dict) and isinstance(info["data"], np.ndarray)
|
|
|
|
obs, reward, terminated, truncated, info = numpy_env.step(np.array([1, 2]))
|
|
assert isinstance(obs, np.ndarray)
|
|
assert isinstance(reward, float)
|
|
assert isinstance(terminated, bool) and isinstance(truncated, bool)
|
|
assert isinstance(info, dict) and isinstance(info["data"], np.ndarray)
|