Files
Gymnasium/tests/experimental/wrappers/test_torch_to_jax.py
2022-12-05 19:14:56 +00:00

106 lines
3.7 KiB
Python

import jax.numpy as jnp
import numpy as np
import pytest
import torch
from gymnasium.experimental.wrappers import JaxToTorchV0
from gymnasium.experimental.wrappers.torch_to_jax import jax_to_torch, torch_to_jax
from tests.testing_env import GenericTestEnv
def torch_data_equivalence(data_1, data_2) -> bool:
"""Return if two variables are equivalent that might contain ``torch.Tensor``."""
if type(data_1) == type(data_2):
if isinstance(data_1, dict):
return data_1.keys() == data_2.keys() and all(
torch_data_equivalence(data_1[k], data_2[k]) for k in data_1.keys()
)
elif isinstance(data_1, (tuple, list)):
return len(data_1) == len(data_2) and all(
torch_data_equivalence(o_1, o_2) for o_1, o_2 in zip(data_1, data_2)
)
elif isinstance(data_1, torch.Tensor):
return data_1.shape == data_2.shape and np.allclose(
data_1, data_2, atol=0.00001
)
else:
return data_1 == data_2
else:
return False
@pytest.mark.parametrize(
"value, expected_value",
[
(1.0, torch.tensor(1.0)),
(2, torch.tensor(2)),
((3.0, 4), (torch.tensor(3.0), torch.tensor(4))),
([3.0, 4], [torch.tensor(3.0), torch.tensor(4)]),
(
{
"a": 6.0,
"b": 7,
},
{"a": torch.tensor(6.0), "b": torch.tensor(7)},
),
(torch.tensor(1.0), torch.tensor(1.0)),
(torch.tensor([1, 2]), torch.tensor([1, 2])),
(torch.tensor([[1.0], [2.0]]), torch.tensor([[1.0], [2.0]])),
(
{"a": (1, torch.tensor(2.0), torch.tensor([3, 4])), "b": {"c": 5}},
{
"a": (torch.tensor(1), torch.tensor(2.0), torch.tensor([3, 4])),
"b": {"c": torch.tensor(5)},
},
),
],
)
def test_roundtripping(value, expected_value):
"""We test numpy -> jax -> numpy as this is direction in the NumpyToJax wrapper."""
roundtripped_value = jax_to_torch(torch_to_jax(value))
assert torch_data_equivalence(roundtripped_value, expected_value)
def _jax_reset_func(self, seed=None, options=None):
return jnp.array([1.0, 2.0, 3.0]), {"data": jnp.array([1, 2, 3])}
def _jax_step_func(self, action):
assert isinstance(action, jnp.DeviceArray), type(action)
return (
jnp.array([1, 2, 3]),
jnp.array(5.0),
jnp.array(True),
jnp.array(False),
{"data": jnp.array([1.0, 2.0])},
)
def test_jax_to_torch():
env = GenericTestEnv(reset_func=_jax_reset_func, step_func=_jax_step_func)
# Check that the reset and step for jax environment are as expected
obs, info = env.reset()
assert isinstance(obs, jnp.DeviceArray)
assert isinstance(info, dict) and isinstance(info["data"], jnp.DeviceArray)
obs, reward, terminated, truncated, info = env.step(jnp.array([1, 2]))
assert isinstance(obs, jnp.DeviceArray)
assert isinstance(reward, jnp.DeviceArray)
assert isinstance(terminated, jnp.DeviceArray) and isinstance(
truncated, jnp.DeviceArray
)
assert isinstance(info, dict) and isinstance(info["data"], jnp.DeviceArray)
# Check that the wrapped version is correct.
wrapped_env = JaxToTorchV0(env)
obs, info = wrapped_env.reset()
assert isinstance(obs, torch.Tensor)
assert isinstance(info, dict) and isinstance(info["data"], torch.Tensor)
obs, reward, terminated, truncated, info = wrapped_env.step(torch.tensor([1, 2]))
assert isinstance(obs, torch.Tensor)
assert isinstance(reward, float)
assert isinstance(terminated, bool) and isinstance(truncated, bool)
assert isinstance(info, dict) and isinstance(info["data"], torch.Tensor)