mirror of
https://github.com/Farama-Foundation/Gymnasium.git
synced 2025-08-19 13:32:03 +00:00
* Updated cartpole-v0 to v1 to prevent warning and added pytest.mark.filterwarnings for tests where warnings are unavoidable * Change np.bool to bool as numpy raises a warning and bool is the suggested solution * Seeding randint is deprecated in the future, integers is new solution * Fixed errors thrown when the video recorder is deleted but not closed * spaces.Box expects a floating array, updated all cases where this was not true and modified float32 to float64 as float array default to float64. Otherwise space.Box raises warning that dtype precision (float32) is lower than array precision (float64). * Added pytest.mark.filterwarnings to preventing the raising of an intended warning * Added comment to explain why a warning is raised that can't be prevented without version update to the environment * Added comment to explain why warning is raised * Changed values to float as expected by the box which default to float64 * Removed --forked from pytest as the pytest-forked project is no being maintained and was not raising warnings as expected * When AsyncVectorEnv has shared_memory=True then a ValueError is raised before _state is initialised. Therefore, on the destruction on the env an error is thrown in .close_extra as _state does not exist * Possible fix that was causing an error in test_call_async_vector_env by ensuring that pygame resources are released * Pygame throws an error with ALSA when closed, using a fix from PettingZoo (https://github.com/Farama-Foundation/PettingZoo/blob/master/pettingzoo/__init__.py). We use the dsp audiodriver to prevent this issue * Modification due to running pre-commit locally * Updated cartpole-v0 to v1 to prevent warning and added pytest.mark.filterwarnings for tests where warnings are unavoidable * Change np.bool to bool as numpy raises a warning and bool is the suggested solution * Seeding randint is deprecated in the future, integers is new solution * Fixed errors thrown when the video recorder is deleted but not closed * spaces.Box expects a floating array, updated all cases where this was not true and modified float32 to float64 as float array default to float64. Otherwise space.Box raises warning that dtype precision (float32) is lower than array precision (float64). * Added pytest.mark.filterwarnings to preventing the raising of an intended warning * Added comment to explain why a warning is raised that can't be prevented without version update to the environment * Added comment to explain why warning is raised * Changed values to float as expected by the box which default to float64 * Removed --forked from pytest as the pytest-forked project is no being maintained and was not raising warnings as expected * When AsyncVectorEnv has shared_memory=True then a ValueError is raised before _state is initialised. Therefore, on the destruction on the env an error is thrown in .close_extra as _state does not exist * Possible fix that was causing an error in test_call_async_vector_env by ensuring that pygame resources are released * Pygame throws an error with ALSA when closed, using a fix from PettingZoo (https://github.com/Farama-Foundation/PettingZoo/blob/master/pettingzoo/__init__.py). We use the dsp audiodriver to prevent this issue * Modification due to running pre-commit locally
764 lines
27 KiB
Python
764 lines
27 KiB
Python
from typing import Optional, Union, List
|
|
|
|
import numpy as np
|
|
import multiprocessing as mp
|
|
import time
|
|
import sys
|
|
from enum import Enum
|
|
from copy import deepcopy
|
|
|
|
from gym import logger
|
|
from gym.logger import warn
|
|
from gym.vector.vector_env import VectorEnv
|
|
from gym.error import (
|
|
AlreadyPendingCallError,
|
|
NoAsyncCallError,
|
|
ClosedEnvironmentError,
|
|
CustomSpaceError,
|
|
)
|
|
from gym.vector.utils import (
|
|
create_shared_memory,
|
|
create_empty_array,
|
|
write_to_shared_memory,
|
|
read_from_shared_memory,
|
|
concatenate,
|
|
iterate,
|
|
CloudpickleWrapper,
|
|
clear_mpi_env_vars,
|
|
)
|
|
|
|
__all__ = ["AsyncVectorEnv"]
|
|
|
|
|
|
class AsyncState(Enum):
|
|
DEFAULT = "default"
|
|
WAITING_RESET = "reset"
|
|
WAITING_STEP = "step"
|
|
WAITING_CALL = "call"
|
|
|
|
|
|
class AsyncVectorEnv(VectorEnv):
|
|
"""Vectorized environment that runs multiple environments in parallel. It
|
|
uses `multiprocessing`_ processes, and pipes for communication.
|
|
|
|
Parameters
|
|
----------
|
|
env_fns : iterable of callable
|
|
Functions that create the environments.
|
|
|
|
observation_space : :class:`gym.spaces.Space`, optional
|
|
Observation space of a single environment. If ``None``, then the
|
|
observation space of the first environment is taken.
|
|
|
|
action_space : :class:`gym.spaces.Space`, optional
|
|
Action space of a single environment. If ``None``, then the action space
|
|
of the first environment is taken.
|
|
|
|
shared_memory : bool
|
|
If ``True``, then the observations from the worker processes are
|
|
communicated back through shared variables. This can improve the
|
|
efficiency if the observations are large (e.g. images).
|
|
|
|
copy : bool
|
|
If ``True``, then the :meth:`~AsyncVectorEnv.reset` and
|
|
:meth:`~AsyncVectorEnv.step` methods return a copy of the observations.
|
|
|
|
context : str, optional
|
|
Context for `multiprocessing`_. If ``None``, then the default context is used.
|
|
|
|
daemon : bool
|
|
If ``True``, then subprocesses have ``daemon`` flag turned on; that is, they
|
|
will quit if the head process quits. However, ``daemon=True`` prevents
|
|
subprocesses to spawn children, so for some environments you may want
|
|
to have it set to ``False``.
|
|
|
|
worker : callable, optional
|
|
If set, then use that worker in a subprocess instead of a default one.
|
|
Can be useful to override some inner vector env logic, for instance,
|
|
how resets on done are handled.
|
|
|
|
Warning
|
|
-------
|
|
:attr:`worker` is an advanced mode option. It provides a high degree of
|
|
flexibility and a high chance to shoot yourself in the foot; thus,
|
|
if you are writing your own worker, it is recommended to start from the code
|
|
for ``_worker`` (or ``_worker_shared_memory``) method, and add changes.
|
|
|
|
Raises
|
|
------
|
|
RuntimeError
|
|
If the observation space of some sub-environment does not match
|
|
:obj:`observation_space` (or, by default, the observation space of
|
|
the first sub-environment).
|
|
|
|
ValueError
|
|
If :obj:`observation_space` is a custom space (i.e. not a default
|
|
space in Gym, such as :class:`~gym.spaces.Box`, :class:`~gym.spaces.Discrete`,
|
|
or :class:`~gym.spaces.Dict`) and :obj:`shared_memory` is ``True``.
|
|
|
|
Example
|
|
-------
|
|
|
|
.. code-block::
|
|
|
|
>>> env = gym.vector.AsyncVectorEnv([
|
|
... lambda: gym.make("Pendulum-v0", g=9.81),
|
|
... lambda: gym.make("Pendulum-v0", g=1.62)
|
|
... ])
|
|
>>> env.reset()
|
|
array([[-0.8286432 , 0.5597771 , 0.90249056],
|
|
[-0.85009176, 0.5266346 , 0.60007906]], dtype=float32)
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
env_fns,
|
|
observation_space=None,
|
|
action_space=None,
|
|
shared_memory=True,
|
|
copy=True,
|
|
context=None,
|
|
daemon=True,
|
|
worker=None,
|
|
):
|
|
ctx = mp.get_context(context)
|
|
self.env_fns = env_fns
|
|
self.shared_memory = shared_memory
|
|
self.copy = copy
|
|
dummy_env = env_fns[0]()
|
|
self.metadata = dummy_env.metadata
|
|
|
|
if (observation_space is None) or (action_space is None):
|
|
observation_space = observation_space or dummy_env.observation_space
|
|
action_space = action_space or dummy_env.action_space
|
|
dummy_env.close()
|
|
del dummy_env
|
|
super().__init__(
|
|
num_envs=len(env_fns),
|
|
observation_space=observation_space,
|
|
action_space=action_space,
|
|
)
|
|
|
|
if self.shared_memory:
|
|
try:
|
|
_obs_buffer = create_shared_memory(
|
|
self.single_observation_space, n=self.num_envs, ctx=ctx
|
|
)
|
|
self.observations = read_from_shared_memory(
|
|
self.single_observation_space, _obs_buffer, n=self.num_envs
|
|
)
|
|
except CustomSpaceError:
|
|
raise ValueError(
|
|
"Using `shared_memory=True` in `AsyncVectorEnv` "
|
|
"is incompatible with non-standard Gym observation spaces "
|
|
"(i.e. custom spaces inheriting from `gym.Space`), and is "
|
|
"only compatible with default Gym spaces (e.g. `Box`, "
|
|
"`Tuple`, `Dict`) for batching. Set `shared_memory=False` "
|
|
"if you use custom observation spaces."
|
|
)
|
|
else:
|
|
_obs_buffer = None
|
|
self.observations = create_empty_array(
|
|
self.single_observation_space, n=self.num_envs, fn=np.zeros
|
|
)
|
|
|
|
self.parent_pipes, self.processes = [], []
|
|
self.error_queue = ctx.Queue()
|
|
target = _worker_shared_memory if self.shared_memory else _worker
|
|
target = worker or target
|
|
with clear_mpi_env_vars():
|
|
for idx, env_fn in enumerate(self.env_fns):
|
|
parent_pipe, child_pipe = ctx.Pipe()
|
|
process = ctx.Process(
|
|
target=target,
|
|
name=f"Worker<{type(self).__name__}>-{idx}",
|
|
args=(
|
|
idx,
|
|
CloudpickleWrapper(env_fn),
|
|
child_pipe,
|
|
parent_pipe,
|
|
_obs_buffer,
|
|
self.error_queue,
|
|
),
|
|
)
|
|
|
|
self.parent_pipes.append(parent_pipe)
|
|
self.processes.append(process)
|
|
|
|
process.daemon = daemon
|
|
process.start()
|
|
child_pipe.close()
|
|
|
|
self._state = AsyncState.DEFAULT
|
|
self._check_spaces()
|
|
|
|
def seed(self, seed=None):
|
|
super().seed(seed=seed)
|
|
self._assert_is_running()
|
|
if seed is None:
|
|
seed = [None for _ in range(self.num_envs)]
|
|
if isinstance(seed, int):
|
|
seed = [seed + i for i in range(self.num_envs)]
|
|
assert len(seed) == self.num_envs
|
|
|
|
if self._state != AsyncState.DEFAULT:
|
|
raise AlreadyPendingCallError(
|
|
f"Calling `seed` while waiting for a pending call to `{self._state.value}` to complete.",
|
|
self._state.value,
|
|
)
|
|
|
|
for pipe, seed in zip(self.parent_pipes, seed):
|
|
pipe.send(("seed", seed))
|
|
_, successes = zip(*[pipe.recv() for pipe in self.parent_pipes])
|
|
self._raise_if_errors(successes)
|
|
|
|
def reset_async(
|
|
self,
|
|
seed: Optional[Union[int, List[int]]] = None,
|
|
return_info: bool = False,
|
|
options: Optional[dict] = None,
|
|
):
|
|
"""Send the calls to :obj:`reset` to each sub-environment.
|
|
|
|
Raises
|
|
------
|
|
ClosedEnvironmentError
|
|
If the environment was closed (if :meth:`close` was previously called).
|
|
|
|
AlreadyPendingCallError
|
|
If the environment is already waiting for a pending call to another
|
|
method (e.g. :meth:`step_async`). This can be caused by two consecutive
|
|
calls to :meth:`reset_async`, with no call to :meth:`reset_wait` in
|
|
between.
|
|
"""
|
|
self._assert_is_running()
|
|
|
|
if seed is None:
|
|
seed = [None for _ in range(self.num_envs)]
|
|
if isinstance(seed, int):
|
|
seed = [seed + i for i in range(self.num_envs)]
|
|
assert len(seed) == self.num_envs
|
|
|
|
if self._state != AsyncState.DEFAULT:
|
|
raise AlreadyPendingCallError(
|
|
f"Calling `reset_async` while waiting for a pending call to `{self._state.value}` to complete",
|
|
self._state.value,
|
|
)
|
|
|
|
for pipe, single_seed in zip(self.parent_pipes, seed):
|
|
single_kwargs = {}
|
|
if single_seed is not None:
|
|
single_kwargs["seed"] = single_seed
|
|
if return_info:
|
|
single_kwargs["return_info"] = return_info
|
|
if options is not None:
|
|
single_kwargs["options"] = options
|
|
|
|
pipe.send(("reset", single_kwargs))
|
|
self._state = AsyncState.WAITING_RESET
|
|
|
|
def reset_wait(
|
|
self,
|
|
timeout=None,
|
|
seed: Optional[int] = None,
|
|
return_info: bool = False,
|
|
options: Optional[dict] = None,
|
|
):
|
|
"""
|
|
Parameters
|
|
----------
|
|
timeout : int or float, optional
|
|
Number of seconds before the call to `reset_wait` times out. If
|
|
`None`, the call to `reset_wait` never times out.
|
|
seed: ignored
|
|
options: ignored
|
|
|
|
Returns
|
|
-------
|
|
element of :attr:`~VectorEnv.observation_space`
|
|
A batch of observations from the vectorized environment.
|
|
infos : list of dicts containing metadata
|
|
|
|
Raises
|
|
------
|
|
ClosedEnvironmentError
|
|
If the environment was closed (if :meth:`close` was previously called).
|
|
|
|
NoAsyncCallError
|
|
If :meth:`reset_wait` was called without any prior call to
|
|
:meth:`reset_async`.
|
|
|
|
TimeoutError
|
|
If :meth:`reset_wait` timed out.
|
|
"""
|
|
self._assert_is_running()
|
|
if self._state != AsyncState.WAITING_RESET:
|
|
raise NoAsyncCallError(
|
|
"Calling `reset_wait` without any prior " "call to `reset_async`.",
|
|
AsyncState.WAITING_RESET.value,
|
|
)
|
|
|
|
if not self._poll(timeout):
|
|
self._state = AsyncState.DEFAULT
|
|
raise mp.TimeoutError(
|
|
f"The call to `reset_wait` has timed out after {timeout} second(s)."
|
|
)
|
|
|
|
results, successes = zip(*[pipe.recv() for pipe in self.parent_pipes])
|
|
self._raise_if_errors(successes)
|
|
self._state = AsyncState.DEFAULT
|
|
|
|
if return_info:
|
|
results, infos = zip(*results)
|
|
infos = list(infos)
|
|
|
|
if not self.shared_memory:
|
|
self.observations = concatenate(
|
|
self.single_observation_space, results, self.observations
|
|
)
|
|
|
|
return (
|
|
deepcopy(self.observations) if self.copy else self.observations
|
|
), infos
|
|
else:
|
|
if not self.shared_memory:
|
|
self.observations = concatenate(
|
|
self.single_observation_space, results, self.observations
|
|
)
|
|
|
|
return deepcopy(self.observations) if self.copy else self.observations
|
|
|
|
def step_async(self, actions):
|
|
"""Send the calls to :obj:`step` to each sub-environment.
|
|
|
|
Parameters
|
|
----------
|
|
actions : element of :attr:`~VectorEnv.action_space`
|
|
Batch of actions.
|
|
|
|
Raises
|
|
------
|
|
ClosedEnvironmentError
|
|
If the environment was closed (if :meth:`close` was previously called).
|
|
|
|
AlreadyPendingCallError
|
|
If the environment is already waiting for a pending call to another
|
|
method (e.g. :meth:`reset_async`). This can be caused by two consecutive
|
|
calls to :meth:`step_async`, with no call to :meth:`step_wait` in
|
|
between.
|
|
"""
|
|
self._assert_is_running()
|
|
if self._state != AsyncState.DEFAULT:
|
|
raise AlreadyPendingCallError(
|
|
f"Calling `step_async` while waiting for a pending call to `{self._state.value}` to complete.",
|
|
self._state.value,
|
|
)
|
|
|
|
actions = iterate(self.action_space, actions)
|
|
for pipe, action in zip(self.parent_pipes, actions):
|
|
pipe.send(("step", action))
|
|
self._state = AsyncState.WAITING_STEP
|
|
|
|
def step_wait(self, timeout=None):
|
|
"""Wait for the calls to :obj:`step` in each sub-environment to finish.
|
|
|
|
Parameters
|
|
----------
|
|
timeout : int or float, optional
|
|
Number of seconds before the call to :meth:`step_wait` times out. If
|
|
``None``, the call to :meth:`step_wait` never times out.
|
|
|
|
Returns
|
|
-------
|
|
observations : element of :attr:`~VectorEnv.observation_space`
|
|
A batch of observations from the vectorized environment.
|
|
|
|
rewards : :obj:`np.ndarray`, dtype :obj:`np.float_`
|
|
A vector of rewards from the vectorized environment.
|
|
|
|
dones : :obj:`np.ndarray`, dtype :obj:`np.bool_`
|
|
A vector whose entries indicate whether the episode has ended.
|
|
|
|
infos : list of dict
|
|
A list of auxiliary diagnostic information dicts from sub-environments.
|
|
|
|
Raises
|
|
------
|
|
ClosedEnvironmentError
|
|
If the environment was closed (if :meth:`close` was previously called).
|
|
|
|
NoAsyncCallError
|
|
If :meth:`step_wait` was called without any prior call to
|
|
:meth:`step_async`.
|
|
|
|
TimeoutError
|
|
If :meth:`step_wait` timed out.
|
|
"""
|
|
self._assert_is_running()
|
|
if self._state != AsyncState.WAITING_STEP:
|
|
raise NoAsyncCallError(
|
|
"Calling `step_wait` without any prior call " "to `step_async`.",
|
|
AsyncState.WAITING_STEP.value,
|
|
)
|
|
|
|
if not self._poll(timeout):
|
|
self._state = AsyncState.DEFAULT
|
|
raise mp.TimeoutError(
|
|
f"The call to `step_wait` has timed out after {timeout} second(s)."
|
|
)
|
|
|
|
results, successes = zip(*[pipe.recv() for pipe in self.parent_pipes])
|
|
self._raise_if_errors(successes)
|
|
self._state = AsyncState.DEFAULT
|
|
observations_list, rewards, dones, infos = zip(*results)
|
|
|
|
if not self.shared_memory:
|
|
self.observations = concatenate(
|
|
self.single_observation_space,
|
|
observations_list,
|
|
self.observations,
|
|
)
|
|
|
|
return (
|
|
deepcopy(self.observations) if self.copy else self.observations,
|
|
np.array(rewards),
|
|
np.array(dones, dtype=np.bool_),
|
|
infos,
|
|
)
|
|
|
|
def call_async(self, name, *args, **kwargs):
|
|
"""
|
|
Parameters
|
|
----------
|
|
name : string
|
|
Name of the method or property to call.
|
|
|
|
*args
|
|
Arguments to apply to the method call.
|
|
|
|
**kwargs
|
|
Keywoard arguments to apply to the method call.
|
|
"""
|
|
self._assert_is_running()
|
|
if self._state != AsyncState.DEFAULT:
|
|
raise AlreadyPendingCallError(
|
|
"Calling `call_async` while waiting "
|
|
f"for a pending call to `{self._state.value}` to complete.",
|
|
self._state.value,
|
|
)
|
|
|
|
for pipe in self.parent_pipes:
|
|
pipe.send(("_call", (name, args, kwargs)))
|
|
self._state = AsyncState.WAITING_CALL
|
|
|
|
def call_wait(self, timeout=None):
|
|
"""
|
|
Parameters
|
|
----------
|
|
timeout : int or float, optional
|
|
Number of seconds before the call to `step_wait` times out. If
|
|
`None` (default), the call to `step_wait` never times out.
|
|
|
|
Returns
|
|
-------
|
|
results : list
|
|
List of the results of the individual calls to the method or
|
|
property for each environment.
|
|
"""
|
|
self._assert_is_running()
|
|
if self._state != AsyncState.WAITING_CALL:
|
|
raise NoAsyncCallError(
|
|
"Calling `call_wait` without any prior call to `call_async`.",
|
|
AsyncState.WAITING_CALL.value,
|
|
)
|
|
|
|
if not self._poll(timeout):
|
|
self._state = AsyncState.DEFAULT
|
|
raise mp.TimeoutError(
|
|
f"The call to `call_wait` has timed out after {timeout} second(s)."
|
|
)
|
|
|
|
results, successes = zip(*[pipe.recv() for pipe in self.parent_pipes])
|
|
self._raise_if_errors(successes)
|
|
self._state = AsyncState.DEFAULT
|
|
|
|
return results
|
|
|
|
def set_attr(self, name, values):
|
|
"""
|
|
Parameters
|
|
----------
|
|
name : string
|
|
Name of the property to be set in each individual environment.
|
|
|
|
values : list, tuple, or object
|
|
Values of the property to be set to. If `values` is a list or
|
|
tuple, then it corresponds to the values for each individual
|
|
environment, otherwise a single value is set for all environments.
|
|
"""
|
|
self._assert_is_running()
|
|
if not isinstance(values, (list, tuple)):
|
|
values = [values for _ in range(self.num_envs)]
|
|
if len(values) != self.num_envs:
|
|
raise ValueError(
|
|
"Values must be a list or tuple with length equal to the "
|
|
f"number of environments. Got `{len(values)}` values for "
|
|
f"{self.num_envs} environments."
|
|
)
|
|
|
|
if self._state != AsyncState.DEFAULT:
|
|
raise AlreadyPendingCallError(
|
|
"Calling `set_attr` while waiting "
|
|
f"for a pending call to `{self._state.value}` to complete.",
|
|
self._state.value,
|
|
)
|
|
|
|
for pipe, value in zip(self.parent_pipes, values):
|
|
pipe.send(("_setattr", (name, value)))
|
|
_, successes = zip(*[pipe.recv() for pipe in self.parent_pipes])
|
|
self._raise_if_errors(successes)
|
|
|
|
def close_extras(self, timeout=None, terminate=False):
|
|
"""Close the environments & clean up the extra resources
|
|
(processes and pipes).
|
|
|
|
Parameters
|
|
----------
|
|
timeout : int or float, optional
|
|
Number of seconds before the call to :meth:`close` times out. If ``None``,
|
|
the call to :meth:`close` never times out. If the call to :meth:`close`
|
|
times out, then all processes are terminated.
|
|
|
|
terminate : bool
|
|
If ``True``, then the :meth:`close` operation is forced and all processes
|
|
are terminated.
|
|
|
|
Raises
|
|
------
|
|
TimeoutError
|
|
If :meth:`close` timed out.
|
|
"""
|
|
timeout = 0 if terminate else timeout
|
|
try:
|
|
if self._state != AsyncState.DEFAULT:
|
|
logger.warn(
|
|
f"Calling `close` while waiting for a pending call to `{self._state.value}` to complete."
|
|
)
|
|
function = getattr(self, f"{self._state.value}_wait")
|
|
function(timeout)
|
|
except mp.TimeoutError:
|
|
terminate = True
|
|
|
|
if terminate:
|
|
for process in self.processes:
|
|
if process.is_alive():
|
|
process.terminate()
|
|
else:
|
|
for pipe in self.parent_pipes:
|
|
if (pipe is not None) and (not pipe.closed):
|
|
pipe.send(("close", None))
|
|
for pipe in self.parent_pipes:
|
|
if (pipe is not None) and (not pipe.closed):
|
|
pipe.recv()
|
|
|
|
for pipe in self.parent_pipes:
|
|
if pipe is not None:
|
|
pipe.close()
|
|
for process in self.processes:
|
|
process.join()
|
|
|
|
def _poll(self, timeout=None):
|
|
self._assert_is_running()
|
|
if timeout is None:
|
|
return True
|
|
end_time = time.perf_counter() + timeout
|
|
delta = None
|
|
for pipe in self.parent_pipes:
|
|
delta = max(end_time - time.perf_counter(), 0)
|
|
if pipe is None:
|
|
return False
|
|
if pipe.closed or (not pipe.poll(delta)):
|
|
return False
|
|
return True
|
|
|
|
def _check_spaces(self):
|
|
self._assert_is_running()
|
|
spaces = (self.single_observation_space, self.single_action_space)
|
|
for pipe in self.parent_pipes:
|
|
pipe.send(("_check_spaces", spaces))
|
|
results, successes = zip(*[pipe.recv() for pipe in self.parent_pipes])
|
|
self._raise_if_errors(successes)
|
|
same_observation_spaces, same_action_spaces = zip(*results)
|
|
if not all(same_observation_spaces):
|
|
raise RuntimeError(
|
|
"Some environments have an observation space different from "
|
|
f"`{self.single_observation_space}`. In order to batch observations, "
|
|
"the observation spaces from all environments must be equal."
|
|
)
|
|
if not all(same_action_spaces):
|
|
raise RuntimeError(
|
|
"Some environments have an action space different from "
|
|
f"`{self.single_action_space}`. In order to batch actions, the "
|
|
"action spaces from all environments must be equal."
|
|
)
|
|
|
|
def _assert_is_running(self):
|
|
if self.closed:
|
|
raise ClosedEnvironmentError(
|
|
f"Trying to operate on `{type(self).__name__}`, after a call to `close()`."
|
|
)
|
|
|
|
def _raise_if_errors(self, successes):
|
|
if all(successes):
|
|
return
|
|
|
|
num_errors = self.num_envs - sum(successes)
|
|
assert num_errors > 0
|
|
for _ in range(num_errors):
|
|
index, exctype, value = self.error_queue.get()
|
|
logger.error(
|
|
f"Received the following error from Worker-{index}: {exctype.__name__}: {value}"
|
|
)
|
|
logger.error(f"Shutting down Worker-{index}.")
|
|
self.parent_pipes[index].close()
|
|
self.parent_pipes[index] = None
|
|
|
|
logger.error("Raising the last exception back to the main process.")
|
|
raise exctype(value)
|
|
|
|
def __del__(self):
|
|
if not getattr(self, "closed", True) and hasattr(self, "_state"):
|
|
self.close(terminate=True)
|
|
|
|
|
|
def _worker(index, env_fn, pipe, parent_pipe, shared_memory, error_queue):
|
|
assert shared_memory is None
|
|
env = env_fn()
|
|
parent_pipe.close()
|
|
try:
|
|
while True:
|
|
command, data = pipe.recv()
|
|
if command == "reset":
|
|
if "return_info" in data and data["return_info"] == True:
|
|
observation, info = env.reset(**data)
|
|
pipe.send(((observation, info), True))
|
|
else:
|
|
observation = env.reset(**data)
|
|
pipe.send((observation, True))
|
|
|
|
elif command == "step":
|
|
observation, reward, done, info = env.step(data)
|
|
if done:
|
|
info["terminal_observation"] = observation
|
|
observation = env.reset()
|
|
pipe.send(((observation, reward, done, info), True))
|
|
elif command == "seed":
|
|
env.seed(data)
|
|
pipe.send((None, True))
|
|
elif command == "close":
|
|
pipe.send((None, True))
|
|
break
|
|
elif command == "_call":
|
|
name, args, kwargs = data
|
|
if name in ["reset", "step", "seed", "close"]:
|
|
raise ValueError(
|
|
f"Trying to call function `{name}` with "
|
|
f"`_call`. Use `{name}` directly instead."
|
|
)
|
|
function = getattr(env, name)
|
|
if callable(function):
|
|
pipe.send((function(*args, **kwargs), True))
|
|
else:
|
|
pipe.send((function, True))
|
|
elif command == "_setattr":
|
|
name, value = data
|
|
setattr(env, name, value)
|
|
pipe.send((None, True))
|
|
elif command == "_check_spaces":
|
|
pipe.send(
|
|
(
|
|
(data[0] == env.observation_space, data[1] == env.action_space),
|
|
True,
|
|
)
|
|
)
|
|
else:
|
|
raise RuntimeError(
|
|
f"Received unknown command `{command}`. Must "
|
|
"be one of {`reset`, `step`, `seed`, `close`, `_call`, "
|
|
"`_setattr`, `_check_spaces`}."
|
|
)
|
|
except (KeyboardInterrupt, Exception):
|
|
error_queue.put((index,) + sys.exc_info()[:2])
|
|
pipe.send((None, False))
|
|
finally:
|
|
env.close()
|
|
|
|
|
|
def _worker_shared_memory(index, env_fn, pipe, parent_pipe, shared_memory, error_queue):
|
|
assert shared_memory is not None
|
|
env = env_fn()
|
|
observation_space = env.observation_space
|
|
parent_pipe.close()
|
|
try:
|
|
while True:
|
|
command, data = pipe.recv()
|
|
if command == "reset":
|
|
if "return_info" in data and data["return_info"] == True:
|
|
observation, info = env.reset(**data)
|
|
write_to_shared_memory(
|
|
observation_space, index, observation, shared_memory
|
|
)
|
|
pipe.send(((None, info), True))
|
|
else:
|
|
observation = env.reset(**data)
|
|
write_to_shared_memory(
|
|
observation_space, index, observation, shared_memory
|
|
)
|
|
pipe.send((None, True))
|
|
elif command == "step":
|
|
observation, reward, done, info = env.step(data)
|
|
if done:
|
|
info["terminal_observation"] = observation
|
|
observation = env.reset()
|
|
write_to_shared_memory(
|
|
observation_space, index, observation, shared_memory
|
|
)
|
|
pipe.send(((None, reward, done, info), True))
|
|
elif command == "seed":
|
|
env.seed(data)
|
|
pipe.send((None, True))
|
|
elif command == "close":
|
|
pipe.send((None, True))
|
|
break
|
|
elif command == "_call":
|
|
name, args, kwargs = data
|
|
if name in ["reset", "step", "seed", "close"]:
|
|
raise ValueError(
|
|
f"Trying to call function `{name}` with "
|
|
f"`_call`. Use `{name}` directly instead."
|
|
)
|
|
function = getattr(env, name)
|
|
if callable(function):
|
|
pipe.send((function(*args, **kwargs), True))
|
|
else:
|
|
pipe.send((function, True))
|
|
elif command == "_setattr":
|
|
name, value = data
|
|
setattr(env, name, value)
|
|
pipe.send((None, True))
|
|
elif command == "_check_spaces":
|
|
pipe.send(
|
|
((data[0] == observation_space, data[1] == env.action_space), True)
|
|
)
|
|
else:
|
|
raise RuntimeError(
|
|
f"Received unknown command `{command}`. Must "
|
|
"be one of {`reset`, `step`, `seed`, `close`, `_call`, "
|
|
"`_setattr`, `_check_spaces`}."
|
|
)
|
|
except (KeyboardInterrupt, Exception):
|
|
error_queue.put((index,) + sys.exc_info()[:2])
|
|
pipe.send((None, False))
|
|
finally:
|
|
env.close()
|