Files
Gymnasium/gym/envs/classic_control/pendulum.py
Omar Younis 9acf9cd367 Render API (#2671)
* add pygame GUI for frozen_lake.py env

* add new line at EOF

* pre-commit reformat

* improve graphics

* new images and dynamic window size

* darker tile borders and fix ICC profile

* pre-commit hook

* adjust elf and stool size

* Update frozen_lake.py

* reformat

* fix #2600

* #2600

* add rgb_array support

* reformat

* test render api change on FrozenLake

* add render support for reset on frozenlake

* add clock on pygame render

* new render api for blackjack

* new render api for cliffwalking

* new render api for Env class

* update reset method, lunar and Env

* fix wrapper

* fix reset lunar

* new render api for box2d envs

* new render api for mujoco envs

* fix bug

* new render api for classic control envs

* fix tests

* add render_mode None for CartPole

* new render api for test fake envs

* pre-commit hook

* fix FrozenLake

* fix FrozenLake

* more render_mode to super - frozenlake

* remove kwargs from frozen_lake new

* pre-commit hook

* add deprecated render method

* add backwards compatibility

* fix test

* add _render

* move pygame.init() (avoid pygame dependency on init)

* fix pygame dependencies

* remove collect_render() maintain multi-behaviours .render()

* add type hints

* fix renderer

* don't call .render() with None

* improve docstring

* add single_rgb_array to all envs

* remove None from metadata["render_modes"]

* add type hints to test_env_checkers

* fix lint

* add comments to renderer

* add comments to single_depth_array and single_state_pixels

* reformat

* add deprecation warnings and env.render_mode declaration

* fix lint

* reformat

* fix tests

* add docs

* fix car racing determinism

* remove warning test envs, customizable modes on renderer

* remove commments and add todo for env_checker

* fix car racing

* replace render mode check with assert

* update new mujoco

* reformat

* reformat

* change metaclass definition

* fix tests

* implement mark suggestions (test, docs, sets)

* check_render

Co-authored-by: J K Terry <jkterry0@gmail.com>
2022-06-07 18:20:56 -04:00

267 lines
9.0 KiB
Python

__credits__ = ["Carlos Luis"]
from os import path
from typing import Optional
import numpy as np
import gym
from gym import spaces
from gym.error import DependencyNotInstalled
from gym.utils.renderer import Renderer
class PendulumEnv(gym.Env):
"""
### Description
The inverted pendulum swingup problem is based on the classic problem in control theory.
The system consists of a pendulum attached at one end to a fixed point, and the other end being free.
The pendulum starts in a random position and the goal is to apply torque on the free end to swing it
into an upright position, with its center of gravity right above the fixed point.
The diagram below specifies the coordinate system used for the implementation of the pendulum's
dynamic equations.
![Pendulum Coordinate System](./diagrams/pendulum.png)
- `x-y`: cartesian coordinates of the pendulum's end in meters.
- `theta` : angle in radians.
- `tau`: torque in `N m`. Defined as positive _counter-clockwise_.
### Action Space
The action is a `ndarray` with shape `(1,)` representing the torque applied to free end of the pendulum.
| Num | Action | Min | Max |
|-----|--------|------|-----|
| 0 | Torque | -2.0 | 2.0 |
### Observation Space
The observation is a `ndarray` with shape `(3,)` representing the x-y coordinates of the pendulum's free
end and its angular velocity.
| Num | Observation | Min | Max |
|-----|------------------|------|-----|
| 0 | x = cos(theta) | -1.0 | 1.0 |
| 1 | y = sin(angle) | -1.0 | 1.0 |
| 2 | Angular Velocity | -8.0 | 8.0 |
### Rewards
The reward function is defined as:
*r = -(theta<sup>2</sup> + 0.1 * theta_dt<sup>2</sup> + 0.001 * torque<sup>2</sup>)*
where `$\theta$` is the pendulum's angle normalized between *[-pi, pi]* (with 0 being in the upright position).
Based on the above equation, the minimum reward that can be obtained is
*-(pi<sup>2</sup> + 0.1 * 8<sup>2</sup> + 0.001 * 2<sup>2</sup>) = -16.2736044*,
while the maximum reward is zero (pendulum is upright with zero velocity and no torque applied).
### Starting State
The starting state is a random angle in *[-pi, pi]* and a random angular velocity in *[-1,1]*.
### Episode Termination
The episode terminates at 200 time steps.
### Arguments
- `g`: acceleration of gravity measured in *(m s<sup>-2</sup>)* used to calculate the pendulum dynamics.
The default value is g = 10.0 .
```
gym.make('Pendulum-v1', g=9.81)
```
### Version History
* v1: Simplify the math equations, no difference in behavior.
* v0: Initial versions release (1.0.0)
"""
metadata = {
"render_modes": ["human", "rgb_array", "single_rgb_array"],
"render_fps": 30,
}
def __init__(self, render_mode: Optional[str] = None, g=10.0):
self.max_speed = 8
self.max_torque = 2.0
self.dt = 0.05
self.g = g
self.m = 1.0
self.l = 1.0
assert render_mode is None or render_mode in self.metadata["render_modes"]
self.render_mode = render_mode
self.renderer = Renderer(self.render_mode, self._render)
self.screen_dim = 500
self.screen = None
self.clock = None
self.isopen = True
high = np.array([1.0, 1.0, self.max_speed], dtype=np.float32)
# This will throw a warning in tests/envs/test_envs in utils/env_checker.py as the space is not symmetric
# or normalised as max_torque == 2 by default. Ignoring the issue here as the default settings are too old
# to update to follow the openai gym api
self.action_space = spaces.Box(
low=-self.max_torque, high=self.max_torque, shape=(1,), dtype=np.float32
)
self.observation_space = spaces.Box(low=-high, high=high, dtype=np.float32)
def step(self, u):
th, thdot = self.state # th := theta
g = self.g
m = self.m
l = self.l
dt = self.dt
u = np.clip(u, -self.max_torque, self.max_torque)[0]
self.last_u = u # for rendering
costs = angle_normalize(th) ** 2 + 0.1 * thdot**2 + 0.001 * (u**2)
newthdot = thdot + (3 * g / (2 * l) * np.sin(th) + 3.0 / (m * l**2) * u) * dt
newthdot = np.clip(newthdot, -self.max_speed, self.max_speed)
newth = th + newthdot * dt
self.state = np.array([newth, newthdot])
self.renderer.render_step()
return self._get_obs(), -costs, False, {}
def reset(
self,
*,
seed: Optional[int] = None,
return_info: bool = False,
options: Optional[dict] = None
):
super().reset(seed=seed)
high = np.array([np.pi, 1])
self.state = self.np_random.uniform(low=-high, high=high)
self.last_u = None
self.renderer.reset()
self.renderer.render_step()
if not return_info:
return self._get_obs()
else:
return self._get_obs(), {}
def _get_obs(self):
theta, thetadot = self.state
return np.array([np.cos(theta), np.sin(theta), thetadot], dtype=np.float32)
def render(self, mode="human"):
if self.render_mode is not None:
return self.renderer.get_renders()
else:
return self._render(mode)
def _render(self, mode="human"):
assert mode in self.metadata["render_modes"]
try:
import pygame
from pygame import gfxdraw
except ImportError:
raise DependencyNotInstalled(
"pygame is not installed, run `pip install gym[classic_control]`"
)
if self.screen is None:
pygame.init()
if mode == "human":
pygame.display.init()
self.screen = pygame.display.set_mode(
(self.screen_dim, self.screen_dim)
)
else: # mode in {"rgb_array", "single_rgb_array"}
self.screen = pygame.Surface((self.screen_dim, self.screen_dim))
if self.clock is None:
self.clock = pygame.time.Clock()
self.surf = pygame.Surface((self.screen_dim, self.screen_dim))
self.surf.fill((255, 255, 255))
bound = 2.2
scale = self.screen_dim / (bound * 2)
offset = self.screen_dim // 2
rod_length = 1 * scale
rod_width = 0.2 * scale
l, r, t, b = 0, rod_length, rod_width / 2, -rod_width / 2
coords = [(l, b), (l, t), (r, t), (r, b)]
transformed_coords = []
for c in coords:
c = pygame.math.Vector2(c).rotate_rad(self.state[0] + np.pi / 2)
c = (c[0] + offset, c[1] + offset)
transformed_coords.append(c)
gfxdraw.aapolygon(self.surf, transformed_coords, (204, 77, 77))
gfxdraw.filled_polygon(self.surf, transformed_coords, (204, 77, 77))
gfxdraw.aacircle(self.surf, offset, offset, int(rod_width / 2), (204, 77, 77))
gfxdraw.filled_circle(
self.surf, offset, offset, int(rod_width / 2), (204, 77, 77)
)
rod_end = (rod_length, 0)
rod_end = pygame.math.Vector2(rod_end).rotate_rad(self.state[0] + np.pi / 2)
rod_end = (int(rod_end[0] + offset), int(rod_end[1] + offset))
gfxdraw.aacircle(
self.surf, rod_end[0], rod_end[1], int(rod_width / 2), (204, 77, 77)
)
gfxdraw.filled_circle(
self.surf, rod_end[0], rod_end[1], int(rod_width / 2), (204, 77, 77)
)
fname = path.join(path.dirname(__file__), "assets/clockwise.png")
img = pygame.image.load(fname)
if self.last_u is not None:
scale_img = pygame.transform.smoothscale(
img,
(scale * np.abs(self.last_u) / 2, scale * np.abs(self.last_u) / 2),
)
is_flip = bool(self.last_u > 0)
scale_img = pygame.transform.flip(scale_img, is_flip, True)
self.surf.blit(
scale_img,
(
offset - scale_img.get_rect().centerx,
offset - scale_img.get_rect().centery,
),
)
# drawing axle
gfxdraw.aacircle(self.surf, offset, offset, int(0.05 * scale), (0, 0, 0))
gfxdraw.filled_circle(self.surf, offset, offset, int(0.05 * scale), (0, 0, 0))
self.surf = pygame.transform.flip(self.surf, False, True)
self.screen.blit(self.surf, (0, 0))
if mode == "human":
pygame.event.pump()
self.clock.tick(self.metadata["render_fps"])
pygame.display.flip()
else: # mode == "rgb_array":
return np.transpose(
np.array(pygame.surfarray.pixels3d(self.screen)), axes=(1, 0, 2)
)
def close(self):
if self.screen is not None:
import pygame
pygame.display.quit()
pygame.quit()
self.isopen = False
def angle_normalize(x):
return ((x + np.pi) % (2 * np.pi)) - np.pi