Files
Gymnasium/tests/vector/test_async_vector_env.py
Omar Younis 9acf9cd367 Render API (#2671)
* add pygame GUI for frozen_lake.py env

* add new line at EOF

* pre-commit reformat

* improve graphics

* new images and dynamic window size

* darker tile borders and fix ICC profile

* pre-commit hook

* adjust elf and stool size

* Update frozen_lake.py

* reformat

* fix #2600

* #2600

* add rgb_array support

* reformat

* test render api change on FrozenLake

* add render support for reset on frozenlake

* add clock on pygame render

* new render api for blackjack

* new render api for cliffwalking

* new render api for Env class

* update reset method, lunar and Env

* fix wrapper

* fix reset lunar

* new render api for box2d envs

* new render api for mujoco envs

* fix bug

* new render api for classic control envs

* fix tests

* add render_mode None for CartPole

* new render api for test fake envs

* pre-commit hook

* fix FrozenLake

* fix FrozenLake

* more render_mode to super - frozenlake

* remove kwargs from frozen_lake new

* pre-commit hook

* add deprecated render method

* add backwards compatibility

* fix test

* add _render

* move pygame.init() (avoid pygame dependency on init)

* fix pygame dependencies

* remove collect_render() maintain multi-behaviours .render()

* add type hints

* fix renderer

* don't call .render() with None

* improve docstring

* add single_rgb_array to all envs

* remove None from metadata["render_modes"]

* add type hints to test_env_checkers

* fix lint

* add comments to renderer

* add comments to single_depth_array and single_state_pixels

* reformat

* add deprecation warnings and env.render_mode declaration

* fix lint

* reformat

* fix tests

* add docs

* fix car racing determinism

* remove warning test envs, customizable modes on renderer

* remove commments and add todo for env_checker

* fix car racing

* replace render mode check with assert

* update new mujoco

* reformat

* reformat

* change metaclass definition

* fix tests

* implement mark suggestions (test, docs, sets)

* check_render

Co-authored-by: J K Terry <jkterry0@gmail.com>
2022-06-07 18:20:56 -04:00

300 lines
10 KiB
Python

from multiprocessing import TimeoutError
import numpy as np
import pytest
from gym.error import AlreadyPendingCallError, ClosedEnvironmentError, NoAsyncCallError
from gym.spaces import Box, Discrete, MultiDiscrete, Tuple
from gym.vector.async_vector_env import AsyncVectorEnv
from tests.vector.utils import (
CustomSpace,
make_custom_space_env,
make_env,
make_slow_env,
)
@pytest.mark.parametrize("shared_memory", [True, False])
def test_create_async_vector_env(shared_memory):
env_fns = [make_env("CartPole-v1", i) for i in range(8)]
try:
env = AsyncVectorEnv(env_fns, shared_memory=shared_memory)
finally:
env.close()
assert env.num_envs == 8
@pytest.mark.parametrize("shared_memory", [True, False])
def test_reset_async_vector_env(shared_memory):
env_fns = [make_env("CartPole-v1", i) for i in range(8)]
try:
env = AsyncVectorEnv(env_fns, shared_memory=shared_memory)
observations = env.reset()
finally:
env.close()
assert isinstance(env.observation_space, Box)
assert isinstance(observations, np.ndarray)
assert observations.dtype == env.observation_space.dtype
assert observations.shape == (8,) + env.single_observation_space.shape
assert observations.shape == env.observation_space.shape
try:
env = AsyncVectorEnv(env_fns, shared_memory=shared_memory)
observations = env.reset(return_info=False)
finally:
env.close()
assert isinstance(env.observation_space, Box)
assert isinstance(observations, np.ndarray)
assert observations.dtype == env.observation_space.dtype
assert observations.shape == (8,) + env.single_observation_space.shape
assert observations.shape == env.observation_space.shape
try:
env = AsyncVectorEnv(env_fns, shared_memory=shared_memory)
observations, infos = env.reset(return_info=True)
finally:
env.close()
assert isinstance(env.observation_space, Box)
assert isinstance(observations, np.ndarray)
assert observations.dtype == env.observation_space.dtype
assert observations.shape == (8,) + env.single_observation_space.shape
assert observations.shape == env.observation_space.shape
assert isinstance(infos, dict)
assert all([isinstance(info, dict) for info in infos])
@pytest.mark.parametrize("shared_memory", [True, False])
@pytest.mark.parametrize("use_single_action_space", [True, False])
def test_step_async_vector_env(shared_memory, use_single_action_space):
env_fns = [make_env("CartPole-v1", i) for i in range(8)]
try:
env = AsyncVectorEnv(env_fns, shared_memory=shared_memory)
observations = env.reset()
assert isinstance(env.single_action_space, Discrete)
assert isinstance(env.action_space, MultiDiscrete)
if use_single_action_space:
actions = [env.single_action_space.sample() for _ in range(8)]
else:
actions = env.action_space.sample()
observations, rewards, dones, _ = env.step(actions)
finally:
env.close()
assert isinstance(env.observation_space, Box)
assert isinstance(observations, np.ndarray)
assert observations.dtype == env.observation_space.dtype
assert observations.shape == (8,) + env.single_observation_space.shape
assert observations.shape == env.observation_space.shape
assert isinstance(rewards, np.ndarray)
assert isinstance(rewards[0], (float, np.floating))
assert rewards.ndim == 1
assert rewards.size == 8
assert isinstance(dones, np.ndarray)
assert dones.dtype == np.bool_
assert dones.ndim == 1
assert dones.size == 8
@pytest.mark.parametrize("shared_memory", [True, False])
def test_call_async_vector_env(shared_memory):
env_fns = [make_env("CartPole-v1", i, render_mode="rgb_array") for i in range(4)]
try:
env = AsyncVectorEnv(env_fns, shared_memory=shared_memory)
_ = env.reset()
images = env.call("render")
gravity = env.call("gravity")
finally:
env.close()
assert isinstance(images, tuple)
assert len(images) == 4
for i in range(4):
assert len(images[i]) == 1
assert isinstance(images[i][0], np.ndarray)
assert isinstance(gravity, tuple)
assert len(gravity) == 4
for i in range(4):
assert isinstance(gravity[i], float)
assert gravity[i] == 9.8
@pytest.mark.parametrize("shared_memory", [True, False])
def test_set_attr_async_vector_env(shared_memory):
env_fns = [make_env("CartPole-v1", i) for i in range(4)]
try:
env = AsyncVectorEnv(env_fns, shared_memory=shared_memory)
env.set_attr("gravity", [9.81, 3.72, 8.87, 1.62])
gravity = env.get_attr("gravity")
assert gravity == (9.81, 3.72, 8.87, 1.62)
finally:
env.close()
@pytest.mark.parametrize("shared_memory", [True, False])
def test_copy_async_vector_env(shared_memory):
env_fns = [make_env("CartPole-v1", i) for i in range(8)]
try:
env = AsyncVectorEnv(env_fns, shared_memory=shared_memory, copy=True)
observations = env.reset()
observations[0] = 0
finally:
env.close()
@pytest.mark.parametrize("shared_memory", [True, False])
def test_no_copy_async_vector_env(shared_memory):
env_fns = [make_env("CartPole-v1", i) for i in range(8)]
try:
env = AsyncVectorEnv(env_fns, shared_memory=shared_memory, copy=False)
observations = env.reset()
observations[0] = 0
finally:
env.close()
@pytest.mark.parametrize("shared_memory", [True, False])
def test_reset_timeout_async_vector_env(shared_memory):
env_fns = [make_slow_env(0.3, i) for i in range(4)]
with pytest.raises(TimeoutError):
try:
env = AsyncVectorEnv(env_fns, shared_memory=shared_memory)
env.reset_async()
env.reset_wait(timeout=0.1)
finally:
env.close(terminate=True)
@pytest.mark.parametrize("shared_memory", [True, False])
def test_step_timeout_async_vector_env(shared_memory):
env_fns = [make_slow_env(0.0, i) for i in range(4)]
with pytest.raises(TimeoutError):
try:
env = AsyncVectorEnv(env_fns, shared_memory=shared_memory)
env.reset()
env.step_async([0.1, 0.1, 0.3, 0.1])
observations, rewards, dones, _ = env.step_wait(timeout=0.1)
finally:
env.close(terminate=True)
@pytest.mark.filterwarnings("ignore::UserWarning")
@pytest.mark.parametrize("shared_memory", [True, False])
def test_reset_out_of_order_async_vector_env(shared_memory):
env_fns = [make_env("CartPole-v1", i) for i in range(4)]
with pytest.raises(NoAsyncCallError):
try:
env = AsyncVectorEnv(env_fns, shared_memory=shared_memory)
env.reset_wait()
except NoAsyncCallError as exception:
assert exception.name == "reset"
raise
finally:
env.close(terminate=True)
with pytest.raises(AlreadyPendingCallError):
try:
env = AsyncVectorEnv(env_fns, shared_memory=shared_memory)
actions = env.action_space.sample()
env.reset()
env.step_async(actions)
env.reset_async()
except NoAsyncCallError as exception:
assert exception.name == "step"
raise
finally:
env.close(terminate=True)
@pytest.mark.filterwarnings("ignore::UserWarning")
@pytest.mark.parametrize("shared_memory", [True, False])
def test_step_out_of_order_async_vector_env(shared_memory):
env_fns = [make_env("CartPole-v1", i) for i in range(4)]
with pytest.raises(NoAsyncCallError):
try:
env = AsyncVectorEnv(env_fns, shared_memory=shared_memory)
actions = env.action_space.sample()
observations = env.reset()
observations, rewards, dones, infos = env.step_wait()
except AlreadyPendingCallError as exception:
assert exception.name == "step"
raise
finally:
env.close(terminate=True)
with pytest.raises(AlreadyPendingCallError):
try:
env = AsyncVectorEnv(env_fns, shared_memory=shared_memory)
actions = env.action_space.sample()
env.reset_async()
env.step_async(actions)
except AlreadyPendingCallError as exception:
assert exception.name == "reset"
raise
finally:
env.close(terminate=True)
@pytest.mark.parametrize("shared_memory", [True, False])
def test_already_closed_async_vector_env(shared_memory):
env_fns = [make_env("CartPole-v1", i) for i in range(4)]
with pytest.raises(ClosedEnvironmentError):
env = AsyncVectorEnv(env_fns, shared_memory=shared_memory)
env.close()
env.reset()
@pytest.mark.parametrize("shared_memory", [True, False])
def test_check_spaces_async_vector_env(shared_memory):
# CartPole-v1 - observation_space: Box(4,), action_space: Discrete(2)
env_fns = [make_env("CartPole-v1", i) for i in range(8)]
# FrozenLake-v1 - Discrete(16), action_space: Discrete(4)
env_fns[1] = make_env("FrozenLake-v1", 1)
with pytest.raises(RuntimeError):
env = AsyncVectorEnv(env_fns, shared_memory=shared_memory)
env.close(terminate=True)
def test_custom_space_async_vector_env():
env_fns = [make_custom_space_env(i) for i in range(4)]
try:
env = AsyncVectorEnv(env_fns, shared_memory=False)
reset_observations = env.reset()
assert isinstance(env.single_action_space, CustomSpace)
assert isinstance(env.action_space, Tuple)
actions = ("action-2", "action-3", "action-5", "action-7")
step_observations, rewards, dones, _ = env.step(actions)
finally:
env.close()
assert isinstance(env.single_observation_space, CustomSpace)
assert isinstance(env.observation_space, Tuple)
assert isinstance(reset_observations, tuple)
assert reset_observations == ("reset", "reset", "reset", "reset")
assert isinstance(step_observations, tuple)
assert step_observations == (
"step(action-2)",
"step(action-3)",
"step(action-5)",
"step(action-7)",
)
def test_custom_space_async_vector_env_shared_memory():
env_fns = [make_custom_space_env(i) for i in range(4)]
with pytest.raises(ValueError):
env = AsyncVectorEnv(env_fns, shared_memory=True)
env.close(terminate=True)