mirror of
https://github.com/Farama-Foundation/Gymnasium.git
synced 2025-08-01 06:07:08 +00:00
195 lines
5.6 KiB
Python
195 lines
5.6 KiB
Python
"""Test for the `EnvSpec`, in particular, a full integration with `EnvSpec`."""
|
|
import pickle
|
|
|
|
import pytest
|
|
|
|
import gymnasium as gym
|
|
from gymnasium.envs.classic_control import CartPoleEnv
|
|
from gymnasium.envs.registration import EnvSpec
|
|
from gymnasium.utils.env_checker import data_equivalence
|
|
|
|
|
|
def test_full_integration():
|
|
# Create an environment to test with
|
|
env = gym.make("CartPole-v1", render_mode="rgb_array")
|
|
|
|
env = gym.wrappers.TimeAwareObservation(env)
|
|
env = gym.wrappers.NormalizeReward(env, gamma=0.8)
|
|
|
|
# Generate the spec_stack
|
|
env_spec = env.spec
|
|
assert isinstance(env_spec, EnvSpec)
|
|
# additional_wrappers = (TimeAwareObservation, NormalizeReward)
|
|
assert len(env_spec.additional_wrappers) == 2
|
|
# env_spec.pprint()
|
|
|
|
# Serialize the spec_stack
|
|
env_spec_json = env_spec.to_json()
|
|
assert isinstance(env_spec_json, str)
|
|
|
|
# Deserialize the spec_stack
|
|
recreate_env_spec = EnvSpec.from_json(env_spec_json)
|
|
# recreate_env_spec.pprint()
|
|
|
|
assert env_spec.additional_wrappers == recreate_env_spec.additional_wrappers
|
|
assert recreate_env_spec == env_spec
|
|
|
|
# Recreate the environment using the spec_stack
|
|
recreated_env = gym.make(recreate_env_spec)
|
|
assert recreated_env.render_mode == "rgb_array"
|
|
assert isinstance(recreated_env, gym.wrappers.NormalizeReward)
|
|
assert recreated_env.gamma == 0.8
|
|
assert isinstance(recreated_env.env, gym.wrappers.TimeAwareObservation)
|
|
assert isinstance(recreated_env.unwrapped, CartPoleEnv)
|
|
|
|
obs, info = env.reset(seed=42)
|
|
recreated_obs, recreated_info = recreated_env.reset(seed=42)
|
|
assert data_equivalence(obs, recreated_obs)
|
|
assert data_equivalence(info, recreated_info)
|
|
|
|
action = env.action_space.sample()
|
|
obs, reward, terminated, truncated, info = env.step(action)
|
|
(
|
|
recreated_obs,
|
|
recreated_reward,
|
|
recreated_terminated,
|
|
recreated_truncated,
|
|
recreated_info,
|
|
) = recreated_env.step(action)
|
|
assert data_equivalence(obs, recreated_obs)
|
|
assert data_equivalence(reward, recreated_reward)
|
|
assert data_equivalence(terminated, recreated_terminated)
|
|
assert data_equivalence(truncated, recreated_truncated)
|
|
assert data_equivalence(info, recreated_info)
|
|
|
|
# Test the pprint of the spec_stack
|
|
spec_stack_output = env_spec.pprint(disable_print=True)
|
|
json_spec_stack_output = env_spec.pprint(disable_print=True)
|
|
assert spec_stack_output == json_spec_stack_output
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"env_spec",
|
|
[
|
|
gym.spec("CartPole-v1"),
|
|
gym.make("CartPole-v1").unwrapped.spec,
|
|
gym.make("CartPole-v1").spec,
|
|
gym.wrappers.NormalizeReward(gym.make("CartPole-v1")).spec,
|
|
],
|
|
)
|
|
def test_env_spec_to_from_json(env_spec: EnvSpec):
|
|
json_spec = env_spec.to_json()
|
|
recreated_env_spec = EnvSpec.from_json(json_spec)
|
|
|
|
assert env_spec == recreated_env_spec
|
|
|
|
|
|
def test_pickling_env_stack():
|
|
env = gym.make("CartPole-v1", render_mode="rgb_array")
|
|
|
|
env = gym.wrappers.FlattenObservation(env)
|
|
env = gym.wrappers.TimeAwareObservation(env)
|
|
env = gym.wrappers.NormalizeReward(env, gamma=0.8)
|
|
|
|
pickled_env = pickle.loads(pickle.dumps(env))
|
|
|
|
obs, info = env.reset(seed=123)
|
|
pickled_obs, pickled_info = pickled_env.reset(seed=123)
|
|
|
|
assert data_equivalence(obs, pickled_obs)
|
|
assert data_equivalence(info, pickled_info)
|
|
|
|
action = env.action_space.sample()
|
|
obs, reward, terminated, truncated, info = env.step(action)
|
|
(
|
|
pickled_obs,
|
|
pickled_reward,
|
|
pickled_terminated,
|
|
pickled_truncated,
|
|
pickled_info,
|
|
) = pickled_env.step(action)
|
|
|
|
assert data_equivalence(obs, pickled_obs)
|
|
assert data_equivalence(reward, pickled_reward)
|
|
assert data_equivalence(terminated, pickled_terminated)
|
|
assert data_equivalence(truncated, pickled_truncated)
|
|
assert data_equivalence(info, pickled_info)
|
|
|
|
env.close()
|
|
pickled_env.close()
|
|
|
|
|
|
# flake8: noqa
|
|
|
|
|
|
def test_env_spec_pprint():
|
|
env = gym.make("CartPole-v1")
|
|
env = gym.wrappers.TimeAwareObservation(env)
|
|
|
|
env_spec = env.spec
|
|
assert env_spec is not None
|
|
|
|
output = env_spec.pprint(disable_print=True)
|
|
assert (
|
|
output
|
|
== """id=CartPole-v1
|
|
reward_threshold=475.0
|
|
max_episode_steps=500
|
|
additional_wrappers=[
|
|
name=TimeAwareObservation, kwargs={}
|
|
]"""
|
|
)
|
|
|
|
output = env_spec.pprint(disable_print=True, include_entry_points=True)
|
|
assert (
|
|
output
|
|
== """id=CartPole-v1
|
|
entry_point=gymnasium.envs.classic_control.cartpole:CartPoleEnv
|
|
reward_threshold=475.0
|
|
max_episode_steps=500
|
|
additional_wrappers=[
|
|
name=TimeAwareObservation, entry_point=gymnasium.wrappers.time_aware_observation:TimeAwareObservation, kwargs={}
|
|
]"""
|
|
)
|
|
|
|
output = env_spec.pprint(disable_print=True, print_all=True)
|
|
assert (
|
|
output
|
|
== """id=CartPole-v1
|
|
entry_point=gymnasium.envs.classic_control.cartpole:CartPoleEnv
|
|
reward_threshold=475.0
|
|
nondeterministic=False
|
|
max_episode_steps=500
|
|
order_enforce=True
|
|
autoreset=False
|
|
disable_env_checker=False
|
|
applied_api_compatibility=False
|
|
additional_wrappers=[
|
|
name=TimeAwareObservation, kwargs={}
|
|
]"""
|
|
)
|
|
|
|
env_spec.additional_wrappers = ()
|
|
output = env_spec.pprint(disable_print=True)
|
|
assert (
|
|
output
|
|
== """id=CartPole-v1
|
|
reward_threshold=475.0
|
|
max_episode_steps=500"""
|
|
)
|
|
|
|
output = env_spec.pprint(disable_print=True, print_all=True)
|
|
assert (
|
|
output
|
|
== """id=CartPole-v1
|
|
entry_point=gymnasium.envs.classic_control.cartpole:CartPoleEnv
|
|
reward_threshold=475.0
|
|
nondeterministic=False
|
|
max_episode_steps=500
|
|
order_enforce=True
|
|
autoreset=False
|
|
disable_env_checker=False
|
|
applied_api_compatibility=False
|
|
additional_wrappers=[]"""
|
|
)
|